Menu Close

For-x-lt-1-we-have-that-1-x-1-2-1-1-2-x-1-2-1-2-1-2-x-2-1-2-1-2-1-1-2-2-3-x-3-1-x-1-2-1-r-1-k-0-r-1-0-5-k-r-x-r-Let-g-r-k-0-




Question Number 8127 by Yozzia last updated on 30/Sep/16
For ∣x∣<1, we have that  (1+x)^(1/2) =1+(1/2)x+((((1/2))((1/2)−1))/(2!))x^2 +(((1/2)((1/2)−1)((1/2)−2))/(3!))x^3 +...  (1+x)^(1/2) =1+Σ_(r=1) ^∞ ((Π_(k=0) ^(r−1) (0.5−k))/(r!))x^r .  Let g(r)=Π_(k=0) ^(r−1) (0.5−k).  Is it true that for x=(1/2)i⇒∣x∣=0.5<1  (1+(1/2)i)^(1/2) =1+Σ_(r=1) ^∞ ((g(r))/(r!))×(1/2^r )i^r   ?  (i=(√(−1)))
Forx∣<1,wehavethat(1+x)1/2=1+12x+(12)(121)2!x2+12(121)(122)3!x3+(1+x)1/2=1+r=1r1k=0(0.5k)r!xr.Letg(r)=r1k=0(0.5k).Isittruethatforx=12i⇒∣x∣=0.5<1(1+12i)1/2=1+r=1g(r)r!×12rir?(i=1)
Commented by prakash jain last updated on 01/Oct/16
It is a Taylor series expansion so  it is true for any f(z).  f(z−a)=Σ_(k=1) ^∞ ((f^((k)) (a))/(k!))(z−a)^k   If series on RHS converges.
ItisaTaylorseriesexpansionsoitistrueforanyf(z).f(za)=k=1f(k)(a)k!(za)kIfseriesonRHSconverges.
Commented by prakash jain last updated on 01/Oct/16
f(z)=Σ_(n=0) ^∞ c_n (z−a)^n   from ratio test  lim_(n→∞) ∣((c_(n+1) (z−a))/c_n )∣<1  or ∣z−a∣<lim_(n→∞) ∣(c_n /c_(n+1) )∣  for (1+z)^y  (a=0)  c_n =((y(y−1)...(y−n+1))/(n!))  c_(n+1) =((y(y−1)...(y−n+1)(y−n))/((n+1)!))  (c_n /c_(n+1) )=((n+1)/(y−n))  lim_(n→∞)  ∣(c_n /c_(n+1) )∣=1  so the series converges if ∣z∣<1  so the series expansion of (1+(i/2))^(1/2)   is correct.
f(z)=n=0cn(za)nfromratiotestlimncn+1(za)cn∣<1orza∣<limncncn+1for(1+z)y(a=0)cn=y(y1)(yn+1)n!cn+1=y(y1)(yn+1)(yn)(n+1)!cncn+1=n+1ynlimncncn+1∣=1sotheseriesconvergesifz∣<1sotheseriesexpansionof(1+i2)1/2iscorrect.
Commented by Yozzias last updated on 01/Oct/16
Thanks! When would convergence  occur?
Thanks!Whenwouldconvergenceoccur?
Answered by prakash jain last updated on 02/Oct/16
answer in comments
answerincomments

Leave a Reply

Your email address will not be published. Required fields are marked *