Menu Close

For-x-lt-1-we-have-that-1-x-1-2-1-1-2-x-1-2-1-2-1-2-x-2-1-2-1-2-1-1-2-2-3-x-3-1-x-1-2-1-r-1-k-0-r-1-0-5-k-r-x-r-Let-g-r-k-0-




Question Number 8127 by Yozzia last updated on 30/Sep/16
For ∣x∣<1, we have that  (1+x)^(1/2) =1+(1/2)x+((((1/2))((1/2)−1))/(2!))x^2 +(((1/2)((1/2)−1)((1/2)−2))/(3!))x^3 +...  (1+x)^(1/2) =1+Σ_(r=1) ^∞ ((Π_(k=0) ^(r−1) (0.5−k))/(r!))x^r .  Let g(r)=Π_(k=0) ^(r−1) (0.5−k).  Is it true that for x=(1/2)i⇒∣x∣=0.5<1  (1+(1/2)i)^(1/2) =1+Σ_(r=1) ^∞ ((g(r))/(r!))×(1/2^r )i^r   ?  (i=(√(−1)))
$${For}\:\mid{x}\mid<\mathrm{1},\:{we}\:{have}\:{that} \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{1}/\mathrm{2}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)}{\mathrm{3}!}{x}^{\mathrm{3}} +… \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{1}/\mathrm{2}} =\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\underset{{k}=\mathrm{0}} {\overset{{r}−\mathrm{1}} {\prod}}\left(\mathrm{0}.\mathrm{5}−{k}\right)}{{r}!}{x}^{{r}} . \\ $$$${Let}\:{g}\left({r}\right)=\underset{{k}=\mathrm{0}} {\overset{{r}−\mathrm{1}} {\prod}}\left(\mathrm{0}.\mathrm{5}−{k}\right). \\ $$$${Is}\:{it}\:{true}\:{that}\:{for}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}{i}\Rightarrow\mid{x}\mid=\mathrm{0}.\mathrm{5}<\mathrm{1} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{i}\right)^{\mathrm{1}/\mathrm{2}} =\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{g}\left({r}\right)}{{r}!}×\frac{\mathrm{1}}{\mathrm{2}^{{r}} }{i}^{{r}} \:\:? \\ $$$$\left({i}=\sqrt{−\mathrm{1}}\right) \\ $$
Commented by prakash jain last updated on 01/Oct/16
It is a Taylor series expansion so  it is true for any f(z).  f(z−a)=Σ_(k=1) ^∞ ((f^((k)) (a))/(k!))(z−a)^k   If series on RHS converges.
$$\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{Taylor}\:\mathrm{series}\:\mathrm{expansion}\:\mathrm{so} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{any}\:{f}\left({z}\right). \\ $$$${f}\left({z}−{a}\right)=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{f}^{\left({k}\right)} \left({a}\right)}{{k}!}\left({z}−{a}\right)^{{k}} \\ $$$$\mathrm{If}\:\mathrm{series}\:\mathrm{on}\:\mathrm{RHS}\:\mathrm{converges}. \\ $$
Commented by prakash jain last updated on 01/Oct/16
f(z)=Σ_(n=0) ^∞ c_n (z−a)^n   from ratio test  lim_(n→∞) ∣((c_(n+1) (z−a))/c_n )∣<1  or ∣z−a∣<lim_(n→∞) ∣(c_n /c_(n+1) )∣  for (1+z)^y  (a=0)  c_n =((y(y−1)...(y−n+1))/(n!))  c_(n+1) =((y(y−1)...(y−n+1)(y−n))/((n+1)!))  (c_n /c_(n+1) )=((n+1)/(y−n))  lim_(n→∞)  ∣(c_n /c_(n+1) )∣=1  so the series converges if ∣z∣<1  so the series expansion of (1+(i/2))^(1/2)   is correct.
$${f}\left({z}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{c}_{{n}} \left({z}−{a}\right)^{{n}} \\ $$$${from}\:{ratio}\:{test} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{c}_{{n}+\mathrm{1}} \left({z}−{a}\right)}{{c}_{{n}} }\mid<\mathrm{1} \\ $$$$\mathrm{or}\:\mid{z}−{a}\mid<\underset{{n}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{c}_{{n}} }{{c}_{{n}+\mathrm{1}} }\mid \\ $$$$\mathrm{for}\:\left(\mathrm{1}+{z}\right)^{{y}} \:\left({a}=\mathrm{0}\right) \\ $$$${c}_{{n}} =\frac{{y}\left({y}−\mathrm{1}\right)…\left({y}−{n}+\mathrm{1}\right)}{{n}!} \\ $$$${c}_{{n}+\mathrm{1}} =\frac{{y}\left({y}−\mathrm{1}\right)…\left({y}−{n}+\mathrm{1}\right)\left({y}−{n}\right)}{\left({n}+\mathrm{1}\right)!} \\ $$$$\frac{{c}_{{n}} }{{c}_{{n}+\mathrm{1}} }=\frac{{n}+\mathrm{1}}{{y}−{n}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mid\frac{{c}_{{n}} }{{c}_{{n}+\mathrm{1}} }\mid=\mathrm{1} \\ $$$${so}\:{the}\:{series}\:{converges}\:{if}\:\mid{z}\mid<\mathrm{1} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{series}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\frac{{i}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{correct}. \\ $$
Commented by Yozzias last updated on 01/Oct/16
Thanks! When would convergence  occur?
$${Thanks}!\:{When}\:{would}\:{convergence} \\ $$$${occur}? \\ $$
Answered by prakash jain last updated on 02/Oct/16
answer in comments
$$\mathrm{answer}\:\mathrm{in}\:\mathrm{comments} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *