Menu Close

For-x-y-n-n-Z-x-y-n-u-0-n-n-u-x-n-u-y-n-Is-there-a-generalization-for-when-n-is-non-integer-e-g-x-y-1-n-n-1-Z-




Question Number 9784 by FilupSmith last updated on 04/Jan/17
For (x+y)^n :n∈Z  (x+y)^n =Σ_(u=0) ^n  ((n),(u) ) x^(n−u) y^n      Is there a generalization for when  n is non integer?     e.g.    (x+y)^(1/n) :n^(−1) ∉Z
For(x+y)n:nZ(x+y)n=nu=0(nu)xnuynIsthereageneralizationforwhennisnoninteger?e.g.(x+y)1/n:n1Z
Commented by FilupSmith last updated on 05/Jan/17
Taylor Series:  f(x)=(x+y)^N           N∈C  f(x)=Σ_(u=0) ^∞ ((f^((u)) (a))/(u!))(x−a)^u      a=1−y  f(x)=Σ_(u=0) ^∞ ((f^((u)) (1−y))/(u!))(x+y−1)^u   f(x)=(((1−y+y)^N )/(0!))(x+y+1)^0 +((N(1−y+y)^(N−1) )/(1!))(x+y−1)^1 +...  ∴f(x)=1+N(x+y−1)+(1/2)N(N−1)(x+y−1)^2 +(1/4)N(N−1)(N−2)(x+y−1)^3 +...     f(x)=(x+y)^N =Σ_(u=0) ^∞ (((N!∙(x+y−1)^u )/(u!∙(N−u)!)))  N∉Z  =Σ_(u=0) ^∞ (((Γ(N+1)∙(x+y−1)^u )/(u!∙Γ(N+1−u))))  ∴f(x)=(x+y)^N =Σ_(u=0) ^∞ (((Γ(N+1))/(u!∙Γ(N+1−u)))(x+y−1)^u )  if N∈Z  =Σ_(u=0) ^∞ ( ((N),(u) )(x+y−1)^u )
TaylorSeries:f(x)=(x+y)NNCf(x)=u=0f(u)(a)u!(xa)ua=1yf(x)=u=0f(u)(1y)u!(x+y1)uf(x)=(1y+y)N0!(x+y+1)0+N(1y+y)N11!(x+y1)1+f(x)=1+N(x+y1)+12N(N1)(x+y1)2+14N(N1)(N2)(x+y1)3+f(x)=(x+y)N=u=0(N!(x+y1)uu!(Nu)!)NZ=u=0(Γ(N+1)(x+y1)uu!Γ(N+1u))f(x)=(x+y)N=u=0(Γ(N+1)u!Γ(N+1u)(x+y1)u)ifNZ=u=0((Nu)(x+y1)u)
Commented by prakash jain last updated on 04/Jan/17
Taylor series is valid. However convergence  test are still required so it will not  converge for all values of x and y.
Taylorseriesisvalid.Howeverconvergencetestarestillrequiredsoitwillnotconvergeforallvaluesofxandy.
Commented by FilupSmith last updated on 05/Jan/17
How do you test that?
Howdoyoutestthat?
Commented by FilupSmith last updated on 05/Jan/17
f(x)=Σ_(u=0) ^∞ (((Γ(N+1))/(u!∙Γ(N+1−u)))(x+y−1)^u )     Converges if L=lim_(n→∞) ∣(a_(n+1) /a_n )∣<1  L=lim_(u→∞) ∣((((Γ(N+1))/((u+1)!∙Γ(N+1−u−1)))(x+y−1)^(u+1) )/(((Γ(N+1))/(u!∙Γ(N+1−u)))(x+y−1)^u ))∣  L=lim_(u→∞) ∣((Γ(N+1)(x+y−1)^(u+1) )/((u+1)!∙Γ(N+1−u−1)))×((u!∙Γ(N+1−u))/(Γ(N+1)(x+y−1)^u ))∣  L=lim_(u→∞) ∣(((x+y−1))/((u+1)!∙Γ(N+1−u−1)))×((u!∙Γ(N+1−u))/1)∣  L=lim_(u→∞) ∣(((x+y−1))/((u+1)∙Γ(N−u)))×((Γ(N−u+1))/1)∣  L=lim_(u→∞) ∣(((x+y−1)∙(N−u+1))/((u+1)))×(1/1)∣  L=lim_(u→∞) ∣(((x+y−1)(N−u+1))/((u+1)))∣  L′Hopital′s Law  L=lim_(u→∞) ∣(((x+y−1)(−1))/1)∣  L=∣−(x+y−1)∣  If L<1, f(x) converges  ∴∣x+y−1∣<1     f(x)=(x+y)^N =Σ_(u=0) ^∞ (((Γ(N+1))/(u!∙Γ(N+1−u)))(x+y−1)^u )                               if:  ∣x+y−1∣<1
f(x)=u=0(Γ(N+1)u!Γ(N+1u)(x+y1)u)ConvergesifL=limnan+1an∣<1L=limuΓ(N+1)(u+1)!Γ(N+1u1)(x+y1)u+1Γ(N+1)u!Γ(N+1u)(x+y1)uL=limuΓ(N+1)(x+y1)u+1(u+1)!Γ(N+1u1)×u!Γ(N+1u)Γ(N+1)(x+y1)uL=limu(x+y1)(u+1)!Γ(N+1u1)×u!Γ(N+1u)1L=limu(x+y1)(u+1)Γ(Nu)×Γ(Nu+1)1L=limu(x+y1)(Nu+1)(u+1)×11L=limu(x+y1)(Nu+1)(u+1)LHopitalsLawL=limu(x+y1)(1)1L=∣(x+y1)IfL<1,f(x)converges∴∣x+y1∣<1f(x)=(x+y)N=u=0(Γ(N+1)u!Γ(N+1u)(x+y1)u)if:x+y1∣<1

Leave a Reply

Your email address will not be published. Required fields are marked *