Question Number 9784 by FilupSmith last updated on 04/Jan/17
$$\mathrm{For}\:\left({x}+{y}\right)^{{n}} :{n}\in\mathbb{Z} \\ $$$$\left({x}+{y}\right)^{{n}} =\underset{{u}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{u}}\end{pmatrix}\:{x}^{{n}−{u}} {y}^{{n}} \\ $$$$\: \\ $$$$\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{generalization}\:\mathrm{for}\:\mathrm{when} \\ $$$${n}\:\mathrm{is}\:\mathrm{non}\:\mathrm{integer}? \\ $$$$\: \\ $$$$\mathrm{e}.\mathrm{g}.\:\:\:\:\left({x}+{y}\right)^{\mathrm{1}/{n}} :{n}^{−\mathrm{1}} \notin\mathbb{Z} \\ $$
Commented by FilupSmith last updated on 05/Jan/17
$$\mathrm{Taylor}\:\mathrm{Series}: \\ $$$${f}\left({x}\right)=\left({x}+{y}\right)^{{N}} \:\:\:\:\:\:\:\:\:\:{N}\in\mathbb{C} \\ $$$${f}\left({x}\right)=\underset{{u}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{f}^{\left({u}\right)} \left({a}\right)}{{u}!}\left({x}−{a}\right)^{{u}} \\ $$$$\: \\ $$$${a}=\mathrm{1}−{y} \\ $$$${f}\left({x}\right)=\underset{{u}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{f}^{\left({u}\right)} \left(\mathrm{1}−{y}\right)}{{u}!}\left({x}+{y}−\mathrm{1}\right)^{{u}} \\ $$$${f}\left({x}\right)=\frac{\left(\mathrm{1}−{y}+{y}\right)^{{N}} }{\mathrm{0}!}\left({x}+{y}+\mathrm{1}\right)^{\mathrm{0}} +\frac{{N}\left(\mathrm{1}−{y}+{y}\right)^{{N}−\mathrm{1}} }{\mathrm{1}!}\left({x}+{y}−\mathrm{1}\right)^{\mathrm{1}} +… \\ $$$$\therefore{f}\left({x}\right)=\mathrm{1}+{N}\left({x}+{y}−\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}{N}\left({N}−\mathrm{1}\right)\left({x}+{y}−\mathrm{1}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}{N}\left({N}−\mathrm{1}\right)\left({N}−\mathrm{2}\right)\left({x}+{y}−\mathrm{1}\right)^{\mathrm{3}} +… \\ $$$$\: \\ $$$${f}\left({x}\right)=\left({x}+{y}\right)^{{N}} =\underset{{u}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{{N}!\centerdot\left({x}+{y}−\mathrm{1}\right)^{{u}} }{{u}!\centerdot\left({N}−{u}\right)!}\right) \\ $$$${N}\notin\mathbb{Z} \\ $$$$=\underset{{u}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\Gamma\left({N}+\mathrm{1}\right)\centerdot\left({x}+{y}−\mathrm{1}\right)^{{u}} }{{u}!\centerdot\Gamma\left({N}+\mathrm{1}−{u}\right)}\right) \\ $$$$\therefore{f}\left({x}\right)=\left({x}+{y}\right)^{{N}} =\underset{{u}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\Gamma\left({N}+\mathrm{1}\right)}{{u}!\centerdot\Gamma\left({N}+\mathrm{1}−{u}\right)}\left({x}+{y}−\mathrm{1}\right)^{{u}} \right) \\ $$$$\mathrm{if}\:{N}\in\mathbb{Z} \\ $$$$=\underset{{u}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\begin{pmatrix}{{N}}\\{{u}}\end{pmatrix}\left({x}+{y}−\mathrm{1}\right)^{{u}} \right) \\ $$
Commented by prakash jain last updated on 04/Jan/17
$$\mathrm{Taylor}\:\mathrm{series}\:\mathrm{is}\:\mathrm{valid}.\:\mathrm{However}\:\mathrm{convergence} \\ $$$$\mathrm{test}\:\mathrm{are}\:\mathrm{still}\:\mathrm{required}\:\mathrm{so}\:\mathrm{it}\:\mathrm{will}\:\mathrm{not} \\ $$$$\mathrm{converge}\:\mathrm{for}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{and}\:{y}. \\ $$
Commented by FilupSmith last updated on 05/Jan/17
$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{test}\:\mathrm{that}? \\ $$
Commented by FilupSmith last updated on 05/Jan/17
$${f}\left({x}\right)=\underset{{u}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\Gamma\left({N}+\mathrm{1}\right)}{{u}!\centerdot\Gamma\left({N}+\mathrm{1}−{u}\right)}\left({x}+{y}−\mathrm{1}\right)^{{u}} \right) \\ $$$$\: \\ $$$$\mathrm{Converges}\:\mathrm{if}\:{L}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\mid<\mathrm{1} \\ $$$${L}=\underset{{u}\rightarrow\infty} {\mathrm{lim}}\mid\frac{\frac{\Gamma\left({N}+\mathrm{1}\right)}{\left({u}+\mathrm{1}\right)!\centerdot\Gamma\left({N}+\mathrm{1}−{u}−\mathrm{1}\right)}\left({x}+{y}−\mathrm{1}\right)^{{u}+\mathrm{1}} }{\frac{\Gamma\left({N}+\mathrm{1}\right)}{{u}!\centerdot\Gamma\left({N}+\mathrm{1}−{u}\right)}\left({x}+{y}−\mathrm{1}\right)^{{u}} }\mid \\ $$$${L}=\underset{{u}\rightarrow\infty} {\mathrm{lim}}\mid\frac{\Gamma\left({N}+\mathrm{1}\right)\left({x}+{y}−\mathrm{1}\right)^{{u}+\mathrm{1}} }{\left({u}+\mathrm{1}\right)!\centerdot\Gamma\left({N}+\mathrm{1}−{u}−\mathrm{1}\right)}×\frac{{u}!\centerdot\Gamma\left({N}+\mathrm{1}−{u}\right)}{\Gamma\left({N}+\mathrm{1}\right)\left({x}+{y}−\mathrm{1}\right)^{{u}} }\mid \\ $$$${L}=\underset{{u}\rightarrow\infty} {\mathrm{lim}}\mid\frac{\left({x}+{y}−\mathrm{1}\right)}{\left({u}+\mathrm{1}\right)!\centerdot\Gamma\left({N}+\mathrm{1}−{u}−\mathrm{1}\right)}×\frac{{u}!\centerdot\Gamma\left({N}+\mathrm{1}−{u}\right)}{\mathrm{1}}\mid \\ $$$${L}=\underset{{u}\rightarrow\infty} {\mathrm{lim}}\mid\frac{\left({x}+{y}−\mathrm{1}\right)}{\left({u}+\mathrm{1}\right)\centerdot\Gamma\left({N}−{u}\right)}×\frac{\Gamma\left({N}−{u}+\mathrm{1}\right)}{\mathrm{1}}\mid \\ $$$${L}=\underset{{u}\rightarrow\infty} {\mathrm{lim}}\mid\frac{\left({x}+{y}−\mathrm{1}\right)\centerdot\left({N}−{u}+\mathrm{1}\right)}{\left({u}+\mathrm{1}\right)}×\frac{\mathrm{1}}{\mathrm{1}}\mid \\ $$$${L}=\underset{{u}\rightarrow\infty} {\mathrm{lim}}\mid\frac{\left({x}+{y}−\mathrm{1}\right)\left({N}−{u}+\mathrm{1}\right)}{\left({u}+\mathrm{1}\right)}\mid \\ $$$${L}'{Hopital}'{s}\:{Law} \\ $$$${L}=\underset{{u}\rightarrow\infty} {\mathrm{lim}}\mid\frac{\left({x}+{y}−\mathrm{1}\right)\left(−\mathrm{1}\right)}{\mathrm{1}}\mid \\ $$$${L}=\mid−\left({x}+{y}−\mathrm{1}\right)\mid \\ $$$$\mathrm{If}\:{L}<\mathrm{1},\:{f}\left({x}\right)\:\mathrm{converges} \\ $$$$\therefore\mid{x}+{y}−\mathrm{1}\mid<\mathrm{1} \\ $$$$\: \\ $$$${f}\left({x}\right)=\left({x}+{y}\right)^{{N}} =\underset{{u}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\Gamma\left({N}+\mathrm{1}\right)}{{u}!\centerdot\Gamma\left({N}+\mathrm{1}−{u}\right)}\left({x}+{y}−\mathrm{1}\right)^{{u}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{if}:\:\:\mid{x}+{y}−\mathrm{1}\mid<\mathrm{1} \\ $$