Menu Close

For-y-f-x-x-g-y-Therefore-x-t-t-y-t-f-t-let-r-t-x-t-y-t-rdt-tdt-f-t-dt-Does-x-t-dt-g-y-dy-and-y-t-dt-f-x-dx-




Question Number 2163 by Filup last updated on 06/Nov/15
For: y=f(x) → x=g(y)  Therefore:   { ((x(t)=t)),((y(t)=f(t))) :}  let r(t)=⟨x(t), y(t)⟩    ∴∫rdt=⟨∫tdt, ∫f(t)dt⟩    Does:  ∫x(t)dt=∫g(y)dy  and  ∫y(t)dt=∫f(x)dx
For:y=f(x)x=g(y)Therefore:{x(t)=ty(t)=f(t)letr(t)=x(t),y(t)rdt=tdt,f(t)dtDoes:x(t)dt=g(y)dyandy(t)dt=f(x)dx
Commented by prakash jain last updated on 06/Nov/15
g(y)=x=t  y=f(x)=f(t)  dy= f ′(t)dt  ∫x(t)dt=∫tdt  ∫g(y)dy=∫tf ′(t)dt≠∫tdt
g(y)=x=ty=f(x)=f(t)dy=f(t)dtx(t)dt=tdtg(y)dy=tf(t)dttdt
Answered by prakash jain last updated on 06/Nov/15
Second part   ∫y(t)dt=∫f(x)dx is correct since y(t)=f(t)  ∫f(t)dt=∫f(x)dx ∵x=t
Secondparty(t)dt=f(x)dxiscorrectsincey(t)=f(t)f(t)dt=f(x)dxx=t
Commented by Filup last updated on 06/Nov/15
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *