Menu Close

Function-is-a-b-a-b-AB-a-b-4-b-4-4-b-b-a-1-a-1-2-b-2-a-3-Function-is-a-b-sin-a-b-a-b-sin-a-b-a-b-1-b-5-a-4-9-a-b-9-b-a-Funcion-is-sin-a-sin-b-sin-1-a-sin-1-b-a-b-sin-a-sin-b-




Question Number 4790 by Dnilka228 last updated on 10/Mar/16
Function Γ is a+b  a+b=AB  a≠b−4  b−4=4+b  b=a−1  a−1=2  b=2  a=3  Function Γ is (a/b)+sin a+b  Γ=(a/b)+sin a+b  a=b−1  b=5  a=4  9−a=b  9−b=a  Funcion Γ is ((sin a+sin b)/(sin^(−1) a+sin^(−1) b))×(a+b)  sin a+sin b<c_1   c_1 =a×3  a=b+3  b=2  b+3=2+3  2+3=5  a=5  a×3=15  c_1 =15  c_2 =c_1 ÷5  c_1 ÷5=3  c_2 =3  c_1 +c_2 =c_3   c_3 =18  c_3 ≈sin a+b  a×b×2=20  sin 20=sin a+b  c_3 ≈20
$${Function}\:\Gamma\:{is}\:{a}+{b} \\ $$$${a}+{b}={AB} \\ $$$${a}\neq{b}−\mathrm{4} \\ $$$${b}−\mathrm{4}=\mathrm{4}+{b} \\ $$$${b}={a}−\mathrm{1} \\ $$$${a}−\mathrm{1}=\mathrm{2} \\ $$$${b}=\mathrm{2} \\ $$$${a}=\mathrm{3} \\ $$$${Function}\:\Gamma\:{is}\:\frac{{a}}{{b}}+\mathrm{sin}\:{a}+{b} \\ $$$$\Gamma=\frac{{a}}{{b}}+\mathrm{sin}\:{a}+{b} \\ $$$${a}={b}−\mathrm{1} \\ $$$${b}=\mathrm{5} \\ $$$${a}=\mathrm{4} \\ $$$$\mathrm{9}−{a}={b} \\ $$$$\mathrm{9}−{b}={a} \\ $$$${Funcion}\:\Gamma\:{is}\:\frac{\mathrm{sin}\:{a}+\mathrm{sin}\:{b}}{\mathrm{sin}^{−\mathrm{1}} {a}+\mathrm{sin}^{−\mathrm{1}} {b}}×\left({a}+{b}\right) \\ $$$$\mathrm{sin}\:{a}+\mathrm{sin}\:{b}<{c}_{\mathrm{1}} \\ $$$${c}_{\mathrm{1}} ={a}×\mathrm{3} \\ $$$${a}={b}+\mathrm{3} \\ $$$${b}=\mathrm{2} \\ $$$${b}+\mathrm{3}=\mathrm{2}+\mathrm{3} \\ $$$$\mathrm{2}+\mathrm{3}=\mathrm{5} \\ $$$${a}=\mathrm{5} \\ $$$${a}×\mathrm{3}=\mathrm{15} \\ $$$${c}_{\mathrm{1}} =\mathrm{15} \\ $$$${c}_{\mathrm{2}} ={c}_{\mathrm{1}} \boldsymbol{\div}\mathrm{5} \\ $$$${c}_{\mathrm{1}} \boldsymbol{\div}\mathrm{5}=\mathrm{3} \\ $$$${c}_{\mathrm{2}} =\mathrm{3} \\ $$$${c}_{\mathrm{1}} +{c}_{\mathrm{2}} ={c}_{\mathrm{3}} \\ $$$${c}_{\mathrm{3}} =\mathrm{18} \\ $$$${c}_{\mathrm{3}} \approx\mathrm{sin}\:{a}+{b} \\ $$$${a}×{b}×\mathrm{2}=\mathrm{20} \\ $$$$\mathrm{sin}\:\mathrm{20}=\mathrm{sin}\:{a}+{b} \\ $$$${c}_{\mathrm{3}} \approx\mathrm{20} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *