Menu Close

Geometry-If-a-triangle-with-side-lengths-8-15-and-17-can-be-inscribed-in-a-square-what-is-the-minimum-value-of-the-side-length-of-the-square-




Question Number 134621 by bobhans last updated on 05/Mar/21
Geometry  If a triangle with side lengths 8, 15 and 17 can be inscribed in a square, what is the minimum value of the side length of the square?
$$\mathrm{Geometry} \\ $$If a triangle with side lengths 8, 15 and 17 can be inscribed in a square, what is the minimum value of the side length of the square?
Answered by mr W last updated on 06/Mar/21
x=minimum side length of square  8^2 +15^2 =17^2  ⇒right angled triangle  (√(15^2 −x^2 ))=x−(8/(15))x=(7/(15))x  ⇒x=((15)/( (√(1+((7/(15)))^2 ))))≈13.59
$${x}={minimum}\:{side}\:{length}\:{of}\:{square} \\ $$$$\mathrm{8}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} =\mathrm{17}^{\mathrm{2}} \:\Rightarrow{right}\:{angled}\:{triangle} \\ $$$$\sqrt{\mathrm{15}^{\mathrm{2}} −{x}^{\mathrm{2}} }={x}−\frac{\mathrm{8}}{\mathrm{15}}{x}=\frac{\mathrm{7}}{\mathrm{15}}{x} \\ $$$$\Rightarrow{x}=\frac{\mathrm{15}}{\:\sqrt{\mathrm{1}+\left(\frac{\mathrm{7}}{\mathrm{15}}\right)^{\mathrm{2}} }}\approx\mathrm{13}.\mathrm{59} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *