Menu Close

give-0-pi-2-x-sinx-dx-at-form-of-serie-




Question Number 75950 by turbo msup by abdo last updated on 21/Dec/19
give ∫_0 ^(π/2)  (x/(sinx))dx  at form of serie.
give0π2xsinxdxatformofserie.
Commented by mathmax by abdo last updated on 22/Dec/19
let A = ∫_0 ^(π/2)  (x/(sinx))dx  changement tan((x/2))=t give  A =2∫_0 ^1   ((arctan(t))/((2t)/(1+t^2 )))((2dt)/(1+t^2 )) =2 ∫_0 ^1  ((arctan(t))/t)dt  we have  (d/dt)(arctant) =(1/(1+t^2 )) =Σ_(n=0) ^∞  (−1)^n  t^(2n)  ⇒  arctan(t) =Σ_(n=0) ^∞  (−1)^n  (t^(2n+1) /(2n+1)) +c    (c=0) ⇒  ((arctan(t))/t) =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))t^(2n)   ⇒∫_0 ^1  ((arctan(t))/t)dt=Σ_(n=0) ^∞  (((−1)^n )/((2n+1)))∫_0 ^1  t^(2n) dt  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)))[(1/(2n+1))t^(2n+1) ]_0 ^1  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 )) ⇒  A =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))
letA=0π2xsinxdxchangementtan(x2)=tgiveA=201arctan(t)2t1+t22dt1+t2=201arctan(t)tdtwehaveddt(arctant)=11+t2=n=0(1)nt2narctan(t)=n=0(1)nt2n+12n+1+c(c=0)arctan(t)t=n=0(1)n2n+1t2n01arctan(t)tdt=n=0(1)n(2n+1)01t2ndt=n=0(1)n(2n+1)[12n+1t2n+1]01=n=0(1)n(2n+1)2A=n=0(1)n(2n+1)2
Commented by mathmax by abdo last updated on 22/Dec/19
forgive A =2 Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))
forgiveA=2n=0(1)n(2n+1)2

Leave a Reply

Your email address will not be published. Required fields are marked *