give-0-pi-2-x-sinx-dx-at-form-of-serie- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 75950 by turbo msup by abdo last updated on 21/Dec/19 give∫0π2xsinxdxatformofserie. Commented by mathmax by abdo last updated on 22/Dec/19 letA=∫0π2xsinxdxchangementtan(x2)=tgiveA=2∫01arctan(t)2t1+t22dt1+t2=2∫01arctan(t)tdtwehaveddt(arctant)=11+t2=∑n=0∞(−1)nt2n⇒arctan(t)=∑n=0∞(−1)nt2n+12n+1+c(c=0)⇒arctan(t)t=∑n=0∞(−1)n2n+1t2n⇒∫01arctan(t)tdt=∑n=0∞(−1)n(2n+1)∫01t2ndt=∑n=0∞(−1)n(2n+1)[12n+1t2n+1]01=∑n=0∞(−1)n(2n+1)2⇒A=∑n=0∞(−1)n(2n+1)2 Commented by mathmax by abdo last updated on 22/Dec/19 forgiveA=2∑n=0∞(−1)n(2n+1)2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-10414Next Next post: prove-that-C-I-identical-in-R- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.