Menu Close

Given-0-lt-a-lt-b-prove-that-b-a-2-8b-a-b-2-ab-b-a-2-8a-




Question Number 136739 by Ar Brandon last updated on 25/Mar/21
Given 0<a<b, prove that  (((b−a)^2 )/(8b))≤((a+b)/2)−(√(ab))≤(((b−a)^2 )/(8a))
Given0<a<b,provethat(ba)28ba+b2ab(ba)28a
Answered by snipers237 last updated on 26/Mar/21
((a+b)/2)−(√(ab ))= ((((√a)−(√b))^2 )/2)   and  b−a=((√b)−(√a))((√b)+(√a))  0<a<b⇒(√a)<(√b) . Then  2(√a) < (√a)+(√b) <2(√b)   So 4a<((√a)+(√b))^2 <4b  (((b−a)^2 )/(8b))=((((√b)−(√a))^2 )/2).((((√b)+(√a))^2 )/(4b))<((((√a)−(√b))^2 )/2)  (((b−a)^2 )/(8a))=((((√b)−(√a))^2 )/2).((((√b)+(√a))^2 )/(4a)) >((((√a)−(√b))^2 )/2)     LFYTC
a+b2ab=(ab)22andba=(ba)(b+a)0<a<ba<b.Then2a<a+b<2bSo4a<(a+b)2<4b(ba)28b=(ba)22.(b+a)24b<(ab)22(ba)28a=(ba)22.(b+a)24a>(ab)22LFYTC
Commented by Ar Brandon last updated on 26/Mar/21
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *