Menu Close

given-3-y-1-6-2-x-3-y-x-2-find-1-x-1-y-




Question Number 77186 by jagoll last updated on 04/Jan/20
given    { ((3^y −1= (6/2^x ))),(((3)^(y/x)  = 2 )) :}  find (1/x)+(1/y).
$$\mathrm{given}\: \\ $$$$\begin{cases}{\mathrm{3}^{\mathrm{y}} −\mathrm{1}=\:\frac{\mathrm{6}}{\mathrm{2}^{\mathrm{x}} }}\\{\left(\mathrm{3}\right)^{\frac{\mathrm{y}}{\mathrm{x}}} \:=\:\mathrm{2}\:}\end{cases}\:\:\mathrm{find}\:\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}. \\ $$
Answered by john santu last updated on 04/Jan/20
⇒ (3^y )= (2^x )  let 2^x  = j ⇒ j^2 −j−6=0  (j−3)(j+2) =0 ⇒ { ((j=3 ⇒x=log_2 (3))),((3^(y ) = 3 ⇒ y = 1)) :}  therefore (1/x)+(1/y) = log_3 (6)
$$\Rightarrow\:\left(\mathrm{3}^{{y}} \right)=\:\left(\mathrm{2}^{{x}} \right) \\ $$$${let}\:\mathrm{2}^{{x}} \:=\:{j}\:\Rightarrow\:{j}^{\mathrm{2}} −{j}−\mathrm{6}=\mathrm{0} \\ $$$$\left({j}−\mathrm{3}\right)\left({j}+\mathrm{2}\right)\:=\mathrm{0}\:\Rightarrow\begin{cases}{{j}=\mathrm{3}\:\Rightarrow{x}=\mathrm{log}_{\mathrm{2}} \left(\mathrm{3}\right)}\\{\mathrm{3}^{{y}\:} =\:\mathrm{3}\:\Rightarrow\:{y}\:=\:\mathrm{1}}\end{cases} \\ $$$${therefore}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:=\:\mathrm{log}_{\mathrm{3}} \left(\mathrm{6}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *