Menu Close

Given-a-b-x-2-3x-x-3-dx-11-2-where-a-lt-3-lt-b-a-2b-8-Find-a-b-x-dx-




Question Number 132463 by EDWIN88 last updated on 14/Feb/21
 Given ∫_a ^( b)  ((x^2 −3x)/(∣x−3∣)) dx = ((11)/2) where  { ((a<3<b)),((a+2b=8)) :}   Find ∫_a ^b  ∣x∣ dx.
Givenabx23xx3dx=112where{a<3<ba+2b=8Findabxdx.
Answered by bemath last updated on 14/Feb/21
From a<3<b we get  { ((a−3<0 and)),((b−3>0)) :}  the integral becomes ∫_a ^3 −((x(x−3))/(x−3))dx+∫_3 ^b ((x(x−3))/(x−3)) dx=((11)/2)   (1/(2  ))[ x^2  ]_3 ^b −(1/2) [ x^2  ]_a ^3  = ((11)/2)  ⇔ b^2 −9−(9−a^2 )=11  ⇒b^2 +a^2  = 29 ∧ a=8−2b  ⇒b^2 +4b^2 −32b+64−29=0  ⇔5b^2 −32b+35=0  ⇔(5b−7)(b−5)=0 → { ((b=(7/5) (rejected))),((b=5 (accept))) :}  we get a=−2 . So ∫^(   5) _(−2) ∣x∣ dx =  ∫^(   0) _(−2) −x dx+∫_0 ^5 x dx = −(1/2)(−4)+(1/2)(25)=((29)/2)
Froma<3<bweget{a3<0andb3>0theintegralbecomesa3x(x3)x3dx+3bx(x3)x3dx=11212[x2]3b12[x2]a3=112b29(9a2)=11b2+a2=29a=82bb2+4b232b+6429=05b232b+35=0(5b7)(b5)=0{b=75(rejected)b=5(accept)wegeta=2.So25xdx=20xdx+05xdx=12(4)+12(25)=292

Leave a Reply

Your email address will not be published. Required fields are marked *