Menu Close

Given-a-convex-hexagon-ABCDEG-satisfy-AB-BC-CD-DE-EF-FA-Suppose-ACE-is-a-right-triangle-BC-BE-DE-DA-FA-FC-min-




Question Number 139254 by mathdanisur last updated on 25/Apr/21
Given a convex hexagon ABCDEG  satisfy: AB=BC, CD=DE, EF=FA.  Suppose △ACE is a right triangle.  (((BC)/(BE))+((DE)/(DA))+((FA)/(FC)))_(min) =?
GivenaconvexhexagonABCDEGsatisfy:AB=BC,CD=DE,EF=FA.SupposeACEisarighttriangle.(BCBE+DEDA+FAFC)min=?
Answered by mr W last updated on 27/Apr/21
Commented by mr W last updated on 27/Apr/21
BC=(√(a^2 +p^2 ))  BE=(√(a^2 +(2b+p)^2 ))  P=((BE)/(BC))=((√(a^2 +(2b+p)^2 ))/( (√(a^2 +p^2 ))))=((√(1+(((2b)/a)+(p/a))^2 ))/( (√(1+((p/a))^2 ))))  let x=(p/a), λ=(b/a)  P=((√(1+(2λ+x)^2 ))/( (√(1+x^2 ))))  (dP/dx)=((2(2λ+x))/(2(√(1+(2λ+x)^2 ))(√(1+x^2 ))))−((2x(√(1+(2λ+x)^2 )))/(2(1+x^2 )(√(1+x^2 ))))=0  (((2λ+x))/( (√(1+(2λ+x)^2 ))))=((x(√(1+(2λ+x)^2 )))/((1+x^2 )))  (1+x^2 )(2λ+x)=x[1+(2λ+x)^2 ]  x^2 +2λx−1=0  x=(√(λ^2 +1))−λ=1 for λ=(b/a)=1  P_(max) =((√(1+(2+1)^2 ))/( (√(1+1))))=(√5)  (((BC)/(BE)))_(min) =(1/P_(max) )=(1/( (√5)))  similarly  (((DE)/(DA)))_(min) =(1/( (√5)))  with b=a, c=(√2)a  FA=(√(c^2 +r^2 ))  FC=c+r  S=((FA)/(FC))=((√(c^2 +r^2 ))/(c+r))=((√(1+((r/c))^2 ))/(1+(r/c)))  y=(r/c)  S=((√(1+y^2 ))/(1+y))  (dS/dy)=((2y)/(2(√(1+y^2 ))(1+y)))−((√(1+y^2 ))/((1+y)^2 ))=0  (y/( (√(1+y^2 ))))=((√(1+y^2 ))/(1+y))  y^2 +y=1+y^2   y=1  S_(min) =((√(1+1^2 ))/(1+1))=(1/( (√2)))  (((BC)/(BE))+((DE)/(DA))+((FA)/(FC)))_(min) =(1/( (√5)))+(1/( (√5)))+(1/( (√2)))=((2(√2)+(√5))/( (√(10))))
BC=a2+p2BE=a2+(2b+p)2P=BEBC=a2+(2b+p)2a2+p2=1+(2ba+pa)21+(pa)2letx=pa,λ=baP=1+(2λ+x)21+x2dPdx=2(2λ+x)21+(2λ+x)21+x22x1+(2λ+x)22(1+x2)1+x2=0(2λ+x)1+(2λ+x)2=x1+(2λ+x)2(1+x2)(1+x2)(2λ+x)=x[1+(2λ+x)2]x2+2λx1=0x=λ2+1λ=1forλ=ba=1Pmax=1+(2+1)21+1=5(BCBE)min=1Pmax=15similarly(DEDA)min=15withb=a,c=2aFA=c2+r2FC=c+rS=FAFC=c2+r2c+r=1+(rc)21+rcy=rcS=1+y21+ydSdy=2y21+y2(1+y)1+y2(1+y)2=0y1+y2=1+y21+yy2+y=1+y2y=1Smin=1+121+1=12(BCBE+DEDA+FAFC)min=15+15+12=22+510
Commented by mathdanisur last updated on 30/Apr/21
thankyou sir
thankyousirthankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *