Menu Close

Given-a-matrix-A-M-n-n-k-N-define-A-n-if-A-and-k-1-I-n-if-A-n-and-k-0-A-k-1-A-if-A-n-and-k-1-Prove-that-A-k-A-r-A-k-r-




Question Number 605 by magmarsenpai last updated on 10/Feb/15
Given a matrix A ∈ M_(n × n )  ∀  k ∈ N define:  A= { ((∅_n              if A=∅  and  k≥1)),((I_n               if A≠∅_n  and k≠0)),((A^(k−1) A    if A≠∅_n  and k≥1)) :}  Prove that A^k A^r =A^(k+r)  ∀ k,r ∈ N.
GivenamatrixAMn×nkNdefine:A={nifA=andk1InifAnandk0Ak1AifAnandk1ProvethatAkAr=Ak+rk,rN.
Commented by prakash jain last updated on 09/Feb/15
Question:  k, r∈R or k,r∈N?  A= { ((∅_n              if A=∅  and  k≥1)),((I_n               if A≠∅_n  and k≠0    check if k=0.)),((A^(k−1) A    if A≠∅_n  and k≥1)) :}  The definition in line 2 contradicts with  definition in line 3.  If k , r are real then A^k  needs to be defined  for k<0. A^(0.5) =A^(−0.5) A=undefined  If k, r are postive integers including 0.  The result follows from   property of matrix muliplication.  A^r =A∙A∙A...(r times)  A^k =A∙A∙A ...(k times)
Question:k,rRork,rN?A={nifA=andk1InifAnandk0checkifk=0.Ak1AifAnandk1Thedefinitioninline2contradictswithdefinitioninline3.Ifk,rarerealthenAkneedstobedefinedfork<0.A0.5=A0.5A=undefinedIfk,rarepostiveintegersincluding0.Theresultfollowsfrompropertyofmatrixmuliplication.Ar=AAA(rtimes)Ak=AAA(ktimes)
Answered by magmarsenpai last updated on 09/Feb/15
is true for k,r ∈ N
istruefork,rN
Answered by magmarsenpai last updated on 09/Feb/15
 I  solved so :  we know :  A^k =AA..A (k times)  A^r =AA..A (r times)  Either: A=(a_(i j) )_(n ×n)  ∀ i,j∈{1,...,n}   A^k A^r =C=(c_(i j) )_(n x n)   we have:  c_(i j) =Σ_(j=1) ^n [(a_(i j) )(a_(i j) )..(a_(i j) )][(a_(i j) )(a_(i j) )..(a_(i j) )]  c_(i j) =Σ_(j=1) ^n (a_(i j) )^k (a_(i j) )^r =Σ_(j=1) ^n (a_(i j) )^(k+r)   ∴ A^k A^r =A^(k+r)  , will be well ?
Isolvedso:weknow:Ak=AA..A(ktimes)Ar=AA..A(rtimes)Either:A=(aij)n×ni,j{1,,n}AkAr=C=(cij)nxnwehave:cij=nj=1[(aij)(aij)..(aij)][(aij)(aij)..(aij)]cij=nj=1(aij)k(aij)r=nj=1(aij)k+rAkAr=Ak+r,willbewell?
Answered by prakash jain last updated on 10/Feb/15
Matrix multiplication is associative  A∙A∙A=(A∙A)∙A=A∙(A∙A)  A∙A∙A  (k+r times)=(A∙A∙A k times)∙(A∙A∙A r times)  or  A^(k+r) =A^k ∙A^r
MatrixmultiplicationisassociativeAAA=(AA)A=A(AA)AAA(k+rtimes)=(AAAktimes)(AAArtimes)orAk+r=AkAr

Leave a Reply

Your email address will not be published. Required fields are marked *