Question Number 131155 by EDWIN88 last updated on 02/Feb/21
$${Given}\:\begin{cases}{{a}_{{n}+\mathrm{2}} ={a}_{{n}+\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}{a}_{{n}} }\\{{a}_{\mathrm{1}} =\mathrm{3}\:;\:{a}_{\mathrm{2}} =\mathrm{2}}\end{cases} \\ $$$$\:{find}\:{a}_{{n}} . \\ $$
Answered by john_santu last updated on 02/Feb/21
$${Characteristic}\:{equation} \\ $$$$\lambda^{\mathrm{2}} −\lambda−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\lambda\:=\:\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{2}}}{\mathrm{2}}\:=\:\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${so}\:{a}_{{n}} ={C}_{\mathrm{1}} \left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} +{C}_{\mathrm{2}} \left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\:\begin{cases}{{a}_{\mathrm{1}} \:=\:\mathrm{3}\:=\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right){C}_{\mathrm{1}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right){C}_{\mathrm{2}} }\\{{a}_{\mathrm{2}} =\:\mathrm{2}=\:\left(\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right){C}_{\mathrm{1}} +\left(\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right){C}_{\mathrm{2}} }\end{cases} \\ $$$$\:\begin{cases}{\left(\mathrm{1}+\sqrt{\mathrm{3}}\right){C}_{\mathrm{1}} +\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){C}_{\mathrm{2}} =\mathrm{6}}\\{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right){C}_{\mathrm{1}} +\left(\mathrm{2}−\sqrt{\mathrm{3}}\right){C}_{\mathrm{2}} =\mathrm{4}}\end{cases} \\ $$$$\begin{pmatrix}{\mathrm{1}+\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\:\mathrm{1}−\sqrt{\mathrm{3}}}\\{\mathrm{2}+\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\:\mathrm{2}−\sqrt{\mathrm{3}}}\end{pmatrix}\:\begin{pmatrix}{{C}_{\mathrm{1}} }\\{{C}_{\mathrm{2}} }\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{6}}\\{\mathrm{4}}\end{pmatrix} \\ $$$${C}_{\mathrm{1}} =\:\frac{\begin{vmatrix}{\mathrm{6}\:\:\:\:\mathrm{1}−\sqrt{\mathrm{3}}}\\{\mathrm{4}\:\:\:\:\mathrm{2}−\sqrt{\mathrm{3}}}\end{vmatrix}}{\mathrm{2}\sqrt{\mathrm{3}}}=\:\frac{\mathrm{8}−\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{4}−\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}} \\ $$$${C}_{\mathrm{2}} =\:\frac{\begin{vmatrix}{\mathrm{1}+\sqrt{\mathrm{3}}\:\:\:\:\:\:\mathrm{6}}\\{\mathrm{2}+\sqrt{\mathrm{3}}\:\:\:\:\:\mathrm{4}}\end{vmatrix}}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\:\frac{−\mathrm{8}−\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{3}}}=−\frac{\mathrm{4}+\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Leftrightarrow\:{a}_{{n}} =\left(\frac{\mathrm{4}−\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}}\right)\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{4}+\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}}\right)\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} \\ $$$$ \\ $$
Answered by mr W last updated on 02/Feb/21
$${p}^{\mathrm{2}} −{p}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$${p}=\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${a}_{{n}} ={A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} +{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \\ $$$${a}_{\mathrm{1}} ={A}+{B}=\mathrm{3} \\ $$$${a}_{\mathrm{2}} ={A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)+{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{2} \\ $$$${A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)+\left(\mathrm{3}−{A}\right)\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{2} \\ $$$$\Rightarrow{A}=\frac{\mathrm{9}+\sqrt{\mathrm{3}}}{\mathrm{6}} \\ $$$$\Rightarrow{B}=\mathrm{3}−\frac{\mathrm{9}+\sqrt{\mathrm{3}}}{\mathrm{6}}=\frac{\mathrm{9}−\sqrt{\mathrm{3}}}{\mathrm{6}} \\ $$$$\Rightarrow{a}_{{n}} =\left(\frac{\mathrm{9}+\sqrt{\mathrm{3}}}{\mathrm{6}}\right)\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} +\left(\frac{\mathrm{9}−\sqrt{\mathrm{3}}}{\mathrm{6}}\right)\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \\ $$$${or} \\ $$$$\Rightarrow{a}_{{n}} =\left(\frac{\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{3}}{\:\mathrm{3}}\right)\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{3}}{\:\mathrm{3}}\right)\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} \\ $$