Menu Close

Given-a-quadratic-function-f-x-3-4k-k-3-x-x-2-where-k-is-a-constant-is-always-negative-when-p-k-q-What-is-the-value-of-p-and-q-




Question Number 136124 by bramlexs22 last updated on 18/Mar/21
  Given a quadratic function f(x) =3-4k-(k+3) x-x^2, where k is a constant, is always negative when p<k<q. What is the value of p and q?
$$ \\ $$Given a quadratic function f(x) =3-4k-(k+3) x-x^2, where k is a constant, is always negative when p<k<q. What is the value of p and q?
Answered by EDWIN88 last updated on 18/Mar/21
f(x)=−x^2 −(k+3)x+3−4k < 0 ∀x∈R  taking discriminant Δ<0  ∴ (k+3)^2 −4(−1)(3−4k)<0  k^2 +6k+9+12−16k<0  k^2 −10k+21<0 ⇒(k−7)(k−3)<0  we get 3 < k < 7 so  { ((p=3)),((q=7)) :}
$$\mathrm{f}\left(\mathrm{x}\right)=−\mathrm{x}^{\mathrm{2}} −\left(\mathrm{k}+\mathrm{3}\right)\mathrm{x}+\mathrm{3}−\mathrm{4k}\:<\:\mathrm{0}\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{taking}\:\mathrm{discriminant}\:\Delta<\mathrm{0} \\ $$$$\therefore\:\left(\mathrm{k}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{4}\left(−\mathrm{1}\right)\left(\mathrm{3}−\mathrm{4k}\right)<\mathrm{0} \\ $$$$\mathrm{k}^{\mathrm{2}} +\mathrm{6k}+\mathrm{9}+\mathrm{12}−\mathrm{16k}<\mathrm{0} \\ $$$$\mathrm{k}^{\mathrm{2}} −\mathrm{10k}+\mathrm{21}<\mathrm{0}\:\Rightarrow\left(\mathrm{k}−\mathrm{7}\right)\left(\mathrm{k}−\mathrm{3}\right)<\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{3}\:<\:\mathrm{k}\:<\:\mathrm{7}\:\mathrm{so}\:\begin{cases}{\mathrm{p}=\mathrm{3}}\\{\mathrm{q}=\mathrm{7}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *