Menu Close

Given-an-Elipsis-in-O-i-j-E-x-2-1-4-y-2-1-1-We-admit-that-it-image-by-the-transformation-f-x-2-x-y-y-2-x-y-is-an-elipsis-E-5x-2-5y-2-6xy-8-0-Ca




Question Number 140708 by mathocean1 last updated on 11/May/21
Given an Elipsis in (O;i^→ ;j^→ )  (E): (x^2 /(1/4))+(y^2 /1)=1.   We admit that it image by the transformation   f :  { ((x′=(√2)(x+y))),((y′=(√2)(−x+y) )) :}  is an elipsis (E′): 5x^2 +5y^2 +6xy−8=0    Can you help me to write the reduced  equation of (E′) in (O;i^→ ;j^→ ). I mean  in the similar form of (E)′s equation.
$$\mathrm{Given}\:\mathrm{an}\:\mathrm{Elipsis}\:\mathrm{in}\:\left(\mathrm{O};\overset{\rightarrow} {\mathrm{i}};\overset{\rightarrow} {\mathrm{j}}\right) \\ $$$$\left(\mathrm{E}\right):\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}/\mathrm{4}}+\frac{{y}^{\mathrm{2}} }{\mathrm{1}}=\mathrm{1}.\: \\ $$$${W}\mathrm{e}\:\mathrm{admit}\:\mathrm{that}\:\mathrm{it}\:\mathrm{image}\:\mathrm{by}\:\mathrm{the}\:\mathrm{transformation}\: \\ $$$$\mathrm{f}\::\:\begin{cases}{{x}'=\sqrt{\mathrm{2}}\left({x}+{y}\right)}\\{{y}'=\sqrt{\mathrm{2}}\left(−{x}+{y}\right)\:}\end{cases} \\ $$$${is}\:{an}\:{elipsis}\:\left({E}'\right):\:\mathrm{5}{x}^{\mathrm{2}} +\mathrm{5}{y}^{\mathrm{2}} +\mathrm{6}{xy}−\mathrm{8}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{write}\:\mathrm{the}\:\mathrm{reduced} \\ $$$$\mathrm{equation}\:\mathrm{of}\:\left(\mathrm{E}'\right)\:\mathrm{in}\:\left(\mathrm{O};\overset{\rightarrow} {\mathrm{i}};\overset{\rightarrow} {\mathrm{j}}\right).\:\mathrm{I}\:\mathrm{mean} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{similar}\:\mathrm{form}\:\mathrm{of}\:\left(\mathrm{E}\right)'\mathrm{s}\:\mathrm{equation}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *