Menu Close

Given-cos-8-6cos-6-13cos-4-8cos-2-cos-7-5cos-5-8cos-3-1-2-then-what-the-value-of-tan-2-




Question Number 137338 by liberty last updated on 01/Apr/21
Given ((cos 8θ+6cos 6θ+13cos 4θ+8cos 2θ)/(cos 7θ+5cos 5θ+8cos 3θ)) = (1/2)  then what the value of tan 2θ ?
$$\mathrm{Given}\:\frac{\mathrm{cos}\:\mathrm{8}\theta+\mathrm{6cos}\:\mathrm{6}\theta+\mathrm{13cos}\:\mathrm{4}\theta+\mathrm{8cos}\:\mathrm{2}\theta}{\mathrm{cos}\:\mathrm{7}\theta+\mathrm{5cos}\:\mathrm{5}\theta+\mathrm{8cos}\:\mathrm{3}\theta}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\mathrm{2}\theta\:? \\ $$
Answered by EDWIN88 last updated on 01/Apr/21
consider numerator  ⇔ cos 8θ+cos 6θ+5(cos 6θ+cos 4θ)+8(cos 4θ+cos 2θ)  = 2cos 7θcos θ+5(2cos 5θcos θ)+8(2cos 3θcos θ)  = 2cos θ(cos 7θ+5cos 5θ+8cos 3θ)  Then we have ((2cos θ(cos 7θ+5cos 5θ+8cos 3θ))/(cos 7θ+5cos 5θ+8cos 3θ)) =(1/2)    cos θ = (1/4) ; cos 2θ = 2((1/(16)))−1=−(7/8)   sin 2θ=±(√(1−((49)/(64)))) = ± ((√(15))/8)   tan 2θ = ± ((√(15))/7)
$$\mathrm{consider}\:\mathrm{numerator} \\ $$$$\Leftrightarrow\:\mathrm{cos}\:\mathrm{8}\theta+\mathrm{cos}\:\mathrm{6}\theta+\mathrm{5}\left(\mathrm{cos}\:\mathrm{6}\theta+\mathrm{cos}\:\mathrm{4}\theta\right)+\mathrm{8}\left(\mathrm{cos}\:\mathrm{4}\theta+\mathrm{cos}\:\mathrm{2}\theta\right) \\ $$$$=\:\mathrm{2cos}\:\mathrm{7}\theta\mathrm{cos}\:\theta+\mathrm{5}\left(\mathrm{2cos}\:\mathrm{5}\theta\mathrm{cos}\:\theta\right)+\mathrm{8}\left(\mathrm{2cos}\:\mathrm{3}\theta\mathrm{cos}\:\theta\right) \\ $$$$=\:\mathrm{2cos}\:\theta\left(\mathrm{cos}\:\mathrm{7}\theta+\mathrm{5cos}\:\mathrm{5}\theta+\mathrm{8cos}\:\mathrm{3}\theta\right) \\ $$$$\mathrm{Then}\:\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{2cos}\:\theta\left(\mathrm{cos}\:\mathrm{7}\theta+\mathrm{5cos}\:\mathrm{5}\theta+\mathrm{8cos}\:\mathrm{3}\theta\right)}{\mathrm{cos}\:\mathrm{7}\theta+\mathrm{5cos}\:\mathrm{5}\theta+\mathrm{8cos}\:\mathrm{3}\theta}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \:\mathrm{cos}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:;\:\mathrm{cos}\:\mathrm{2}\theta\:=\:\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{16}}\right)−\mathrm{1}=−\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$ \mathrm{sin}\:\mathrm{2}\theta=\pm\sqrt{\mathrm{1}−\frac{\mathrm{49}}{\mathrm{64}}}\:=\:\pm\:\frac{\sqrt{\mathrm{15}}}{\mathrm{8}} \\ $$$$ \mathrm{tan}\:\mathrm{2}\theta\:=\:\pm\:\frac{\sqrt{\mathrm{15}}}{\mathrm{7}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *