Menu Close

given-f-R-R-f-x-a-n-x-n-a-0-with-a-n-0-a-i-R-i-0-1-n-n-N-supose-that-x-1-x-n-are-roots-the-n-roots-of-f-x-then-proof-or-give-a-counter-example-that-the-root-of-f-n-1-x-




Question Number 1120 by 123456 last updated on 17/Jun/15
given f:R→R  f(x)=a_n x^n +∙∙∙+a_0    with a_n ≠0, a_i ∈R,i∈{0,1,...,n},n∈N^∗   supose that x_1 ,...,x_n   are roots the n roots of f(x)  then proof or give a counter example that the root of  f^((n−1)) (x)  is  x=((x_1 +∙∙∙+x_n )/n)
givenf:RRf(x)=anxn++a0withan0,aiR,i{0,1,,n},nNsuposethatx1,,xnarerootsthenrootsoff(x)thenprooforgiveacounterexamplethattherootoff(n1)(x)isx=x1++xnn
Answered by prakash jain last updated on 17/Jun/15
f(x)=(x−x_1 )(x−x_2 )...(x−x_n )  f(x)=x^n −(x_1 +x_2 +..+x_n )x^(n−1) +...+x_1 x_2 ..x_n   f^(n−1) (x)=n(n−1)(n−2)...2x−(n−1)!(x_1 +x_2 +...+x_n )  Root of f^(n−1) (x)=((x_1 +x_2 +...+x_n )/n)
f(x)=(xx1)(xx2)(xxn)f(x)=xn(x1+x2+..+xn)xn1++x1x2..xnfn1(x)=n(n1)(n2)2x(n1)!(x1+x2++xn)Rootoffn1(x)=x1+x2++xnn

Leave a Reply

Your email address will not be published. Required fields are marked *