Given-f-x-0-x-t-4-t-2-t-2-1-dt-Find-minimum-value-of-f-x- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 134391 by bramlexs22 last updated on 03/Mar/21 Givenf(x)=∫0x(t4−t2t2+1)dt.Findminimumvalueoff(x). Answered by liberty last updated on 03/Mar/21 Givenf(x)=∫0x[t4−t2t2+1]dt.Findminimumvalueoff(x).(∙)df(x)dx=x4−x2x2+1=0x2(x−1)=0→{x=0x=1(∙∙)d2f(x)dx2∣x=1=(4x3−2x)(x2+1)−2x(x4−x2)(x2+1)2>0forx=1sominimumvalueisf(1)(∙∙∙)f(1)=∫01t4−t2t2+1dtf(1)=∫01(t2−2+2t2+1)dtf(1)=[t33−2t+2arctant]01f(1)=13−2+2(π4)=π2−56 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-cosec-sec-and-cot-are-in-H-P-then-sin-tan-cos-Next Next post: Eight-dice-are-tossed-If-the-dice-are-identical-in-appearance-how-many-different-looking-distinguishable-occurrences-are-there- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.