Menu Close

Given-f-x-0-x-t-4-t-2-t-2-1-dt-Find-minimum-value-of-f-x-




Question Number 134391 by bramlexs22 last updated on 03/Mar/21
Given f(x)=∫_0 ^( x)  (((t^4 −t^2 )/(t^2 +1))) dt.  Find minimum value of f(x).
Givenf(x)=0x(t4t2t2+1)dt.Findminimumvalueoff(x).
Answered by liberty last updated on 03/Mar/21
 Given f(x) = ∫_0 ^( x) [ ((t^4 −t^2 )/(t^2 +1))] dt.   Find minimum value of f(x).  (•) ((df(x))/dx) = ((x^4 −x^2 )/(x^2 +1)) = 0    x^2 (x−1) = 0 → { ((x=0)),((x=1)) :}  (••) ((d^2 f(x))/dx^2 )∣_(x=1)  = (((4x^3 −2x)(x^2 +1)−2x(x^4 −x^2 ))/((x^2 +1)^2 ))>0 for x=1  so minimum value is f(1)  (•••) f(1)=∫_0 ^( 1)  ((t^4 −t^2 )/(t^2 +1)) dt   f(1)=∫_0 ^( 1) (t^2 −2+ (2/(t^2 +1)))dt    f(1)= [(t^3 /3)−2t+2arctan t ]_0 ^1    f(1)= (1/3)−2+2((π/4))= (π/2)−(5/6)
Givenf(x)=0x[t4t2t2+1]dt.Findminimumvalueoff(x).()df(x)dx=x4x2x2+1=0x2(x1)=0{x=0x=1()d2f(x)dx2x=1=(4x32x)(x2+1)2x(x4x2)(x2+1)2>0forx=1sominimumvalueisf(1)()f(1)=01t4t2t2+1dtf(1)=01(t22+2t2+1)dtf(1)=[t332t+2arctant]01f(1)=132+2(π4)=π256

Leave a Reply

Your email address will not be published. Required fields are marked *