Menu Close

Given-f-x-2-x-2f-x-2-3x-2-9x-2-15x-find-the-value-of-f-2017-




Question Number 137365 by liberty last updated on 02/Apr/21
Given f(x^2 +x)+2f(x^2 −3x+2)= 9x^2 −15x  find the value of f(2017).
Givenf(x2+x)+2f(x23x+2)=9x215xfindthevalueoff(2017).
Answered by MJS_new last updated on 02/Apr/21
f(t)=at+b  f(x^2 +x)=ax^2 +ax+b  2f(x^2 −3x+2)=2ax^2 −6ax+4a+2b  3ax^2 −5ax+4a+3b=9x^2 −15x  3a=9  −5a=−15  4a+3b=0  ⇒ a=3∧b=−4  f(x)=3x−4  f(2017)=6047
f(t)=at+bf(x2+x)=ax2+ax+b2f(x23x+2)=2ax26ax+4a+2b3ax25ax+4a+3b=9x215x3a=95a=154a+3b=0a=3b=4f(x)=3x4f(2017)=6047
Commented by liberty last updated on 02/Apr/21
thank you
thankyou
Answered by EDWIN88 last updated on 02/Apr/21
let  { ((x^2 +x = a)),((x^2 −3x+2 = b)) :} ⇒  { ((x^2 +x = a)),((2x^2 −6x+4 = 2b)) :}  adding two equation gives 3x^2 −5x+4 = a+2b  ⇒ 3x^2 −5x = a+2b−4 & 9x^2 −15x = 3a+6b−12  we have f(a)+2f(b) = 3a+6b−12  put a=2017⇒ f(2017)+2f(b)=6b+6039  put b=2017⇒f(a)+2f(2017)=3a+12090  summing the two equation gives  3f(2017)+f(a)+2f(b)=3a+6b+18129  3f(2017)+f(a)+2f(b)_(3a+6b−12)  = 3a+6b+18129  ⇔ 3f(2017)= 18129+12=18141  ⇔ f(2017) = ((18141)/3) = 6047
let{x2+x=ax23x+2=b{x2+x=a2x26x+4=2baddingtwoequationgives3x25x+4=a+2b3x25x=a+2b4&9x215x=3a+6b12wehavef(a)+2f(b)=3a+6b12puta=2017f(2017)+2f(b)=6b+6039putb=2017f(a)+2f(2017)=3a+12090summingthetwoequationgives3f(2017)+f(a)+2f(b)=3a+6b+181293f(2017)+f(a)+2f(b)3a+6b12=3a+6b+181293f(2017)=18129+12=18141f(2017)=181413=6047
Commented by liberty last updated on 02/Apr/21
nice
nice

Leave a Reply

Your email address will not be published. Required fields are marked *