Question Number 137365 by liberty last updated on 02/Apr/21
$${Given}\:{f}\left({x}^{\mathrm{2}} +{x}\right)+\mathrm{2}{f}\left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}\right)=\:\mathrm{9}{x}^{\mathrm{2}} −\mathrm{15}{x} \\ $$$${find}\:{the}\:{value}\:{of}\:{f}\left(\mathrm{2017}\right). \\ $$
Answered by MJS_new last updated on 02/Apr/21
$${f}\left({t}\right)={at}+{b} \\ $$$${f}\left({x}^{\mathrm{2}} +{x}\right)={ax}^{\mathrm{2}} +{ax}+{b} \\ $$$$\mathrm{2}{f}\left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}\right)=\mathrm{2}{ax}^{\mathrm{2}} −\mathrm{6}{ax}+\mathrm{4}{a}+\mathrm{2}{b} \\ $$$$\mathrm{3}{ax}^{\mathrm{2}} −\mathrm{5}{ax}+\mathrm{4}{a}+\mathrm{3}{b}=\mathrm{9}{x}^{\mathrm{2}} −\mathrm{15}{x} \\ $$$$\mathrm{3}{a}=\mathrm{9} \\ $$$$−\mathrm{5}{a}=−\mathrm{15} \\ $$$$\mathrm{4}{a}+\mathrm{3}{b}=\mathrm{0} \\ $$$$\Rightarrow\:{a}=\mathrm{3}\wedge{b}=−\mathrm{4} \\ $$$${f}\left({x}\right)=\mathrm{3}{x}−\mathrm{4} \\ $$$${f}\left(\mathrm{2017}\right)=\mathrm{6047} \\ $$
Commented by liberty last updated on 02/Apr/21
$${thank}\:{you} \\ $$
Answered by EDWIN88 last updated on 02/Apr/21
$$\mathrm{let}\:\begin{cases}{{x}^{\mathrm{2}} +{x}\:=\:{a}}\\{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}\:=\:{b}}\end{cases}\:\Rightarrow\:\begin{cases}{{x}^{\mathrm{2}} +{x}\:=\:{a}}\\{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{4}\:=\:\mathrm{2}{b}}\end{cases} \\ $$$${adding}\:{two}\:{equation}\:{gives}\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{4}\:=\:{a}+\mathrm{2}{b} \\ $$$$\Rightarrow\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{5}{x}\:=\:{a}+\mathrm{2}{b}−\mathrm{4}\:\&\:\mathrm{9}{x}^{\mathrm{2}} −\mathrm{15}{x}\:=\:\mathrm{3}{a}+\mathrm{6}{b}−\mathrm{12} \\ $$$${we}\:{have}\:{f}\left({a}\right)+\mathrm{2}{f}\left({b}\right)\:=\:\mathrm{3}{a}+\mathrm{6}{b}−\mathrm{12} \\ $$$${put}\:{a}=\mathrm{2017}\Rightarrow\:{f}\left(\mathrm{2017}\right)+\mathrm{2}{f}\left({b}\right)=\mathrm{6}{b}+\mathrm{6039} \\ $$$${put}\:{b}=\mathrm{2017}\Rightarrow{f}\left({a}\right)+\mathrm{2}{f}\left(\mathrm{2017}\right)=\mathrm{3}{a}+\mathrm{12090} \\ $$$${summing}\:{the}\:{two}\:{equation}\:{gives} \\ $$$$\mathrm{3}{f}\left(\mathrm{2017}\right)+{f}\left({a}\right)+\mathrm{2}{f}\left({b}\right)=\mathrm{3}{a}+\mathrm{6}{b}+\mathrm{18129} \\ $$$$\mathrm{3}{f}\left(\mathrm{2017}\right)+\underset{\mathrm{3}{a}+\mathrm{6}{b}−\mathrm{12}} {\underbrace{{f}\left({a}\right)+\mathrm{2}{f}\left({b}\right)}}\:=\:\mathrm{3}{a}+\mathrm{6}{b}+\mathrm{18129} \\ $$$$\Leftrightarrow\:\mathrm{3}{f}\left(\mathrm{2017}\right)=\:\mathrm{18129}+\mathrm{12}=\mathrm{18141} \\ $$$$\Leftrightarrow\:{f}\left(\mathrm{2017}\right)\:=\:\frac{\mathrm{18141}}{\mathrm{3}}\:=\:\mathrm{6047} \\ $$
Commented by liberty last updated on 02/Apr/21
$${nice} \\ $$