Menu Close

given-f-x-x-2-sin-2x-0-pi-4-f-x-dx-f-pi-2-




Question Number 77842 by jagoll last updated on 11/Jan/20
given   f(x)= x^2 +sin(2x) + ∫ _0 ^(π/4) f(x)dx  f((π/2))=?
givenf(x)=x2+sin(2x)+π40f(x)dxf(π2)=?
Answered by mr W last updated on 11/Jan/20
let ∫_0 ^(π/4) f(x)dx=a=constant  f(x)= x^2 +sin(2x)+a  ∫_0 ^(π/4) f(x)dx=[(x^3 /3)−((cos (2x))/2)+ax]_0 ^(π/4) =a  (π^3 /(192))+(1/2)+((aπ)/4)=a  ⇒a=((π^3 +96)/(48(4−π)))  f(x)= x^2 +sin(2x)+((π^3 +96)/(48(4−π)))  f((π/2))= (π^2 /4)+((π^3 +96)/(48(4−π)))=(((48−11π)π^2 +96)/(48(4−π)))
let0π4f(x)dx=a=constantf(x)=x2+sin(2x)+a0π4f(x)dx=[x33cos(2x)2+ax]0π4=aπ3192+12+aπ4=aa=π3+9648(4π)f(x)=x2+sin(2x)+π3+9648(4π)f(π2)=π24+π3+9648(4π)=(4811π)π2+9648(4π)
Commented by jagoll last updated on 11/Jan/20
thanks you sir
thanksyousir

Leave a Reply

Your email address will not be published. Required fields are marked *