Menu Close

Given-f-x-x-x-2-1-27-1-3-x-x-2-1-27-1-3-g-x-x-3-x-1-Find-0-4-g-f-g-x-dx-




Question Number 133973 by liberty last updated on 26/Feb/21
 Given  { ((f(x)=((x+(√(x^2 +(1/(27))))))^(1/3) +((x−(√(x^2 +(1/(27))))))^(1/3) )),((g(x)=x^3 +x+1)) :}  Find ∫_0 ^4  (g○f○g)(x) dx .
Given{f(x)=x+x2+1273+xx2+1273g(x)=x3+x+1Find40(gfg)(x)dx.
Answered by EDWIN88 last updated on 26/Feb/21
 recall (a+b)^3 = a^3 +b^3 +3ab(a+b)  from f(x)=((x+(√(x^2 +(1/(27))))))^(1/3) +((x−(√(x^2 +(1/(27))))))^(1/3)   (f(x))^3  = 2x −f(x) ⇒(f(x))^3 +f(x)= 2x  this yields (g○f)(x)= (f(x))^3 +f(x)+1=2x+1  ⇒(g○f○g)(x)= 2g(x)+1=2x^3 +2x+3  then λ = ∫_0 ^4  (2x^3 +2x+3)dx = [ (x^4 /2) + x^2 +3x ]_0 ^4    = 128+16+12 = 156
recall(a+b)3=a3+b3+3ab(a+b)fromf(x)=x+x2+1273+xx2+1273(f(x))3=2xf(x)(f(x))3+f(x)=2xthisyields(gf)(x)=(f(x))3+f(x)+1=2x+1(gfg)(x)=2g(x)+1=2x3+2x+3thenλ=40(2x3+2x+3)dx=[x42+x2+3x]04=128+16+12=156

Leave a Reply

Your email address will not be published. Required fields are marked *