Menu Close

Given-log-5-7-a-2-log-7-5-a-2-Find-the-value-a-e-1-ln-x-x-x-x-x-dx-




Question Number 136883 by bramlexs22 last updated on 27/Mar/21
Given log _5 (7^a −2)= log _7 (5^a +2)  . Find the value ∫_a ^e  ((1+ln (x))/(x^x +x^(−x) )) dx .
Givenlog5(7a2)=log7(5a+2).Findthevalueae1+ln(x)xx+xxdx.
Answered by Olaf last updated on 27/Mar/21
log_5 (7^a −2) = log_7 (5^a +2)  ⇒ a = 1 (trivial solution)  Ω = ∫_1 ^e ((1+lnx)/(x^x +x^(−x) )) dx  Ω = ∫_1 ^e ((1+lnx)/(e^(xlnx) +e^(−xlnx) )) dx  Ω = ∫_1 ^e ((d(xlnx))/(e^(xlnx) +e^(−xlnx) ))   Ω = ∫_1 ^e (e^(xlnx) /(1+e^(2xlnx) )) d(xlnx)  Ω = [arctan(e^(xlnx) )]_1 ^e   Ω = arctan(e^e )−(π/4)
log5(7a2)=log7(5a+2)a=1(trivialsolution)Ω=1e1+lnxxx+xxdxΩ=1e1+lnxexlnx+exlnxdxΩ=1ed(xlnx)exlnx+exlnxΩ=1eexlnx1+e2xlnxd(xlnx)Ω=[arctan(exlnx)]1eΩ=arctan(ee)π4
Answered by liberty last updated on 27/Mar/21

Leave a Reply

Your email address will not be published. Required fields are marked *