Menu Close

Given-p-1-i-5-and-q-1-i-5-prove-that-p-6-q-6-2-5-11-




Question Number 138014 by bobhans last updated on 09/Apr/21
Given p=1+i(√5) and q=1−i(√5)   prove that p^6 +q^6  = 2^5 ×11
Givenp=1+i5andq=1i5provethatp6+q6=25×11
Answered by bobhans last updated on 09/Apr/21
 from the given we have   ⇒x^2 −2x+6 = 0 has the roots    { ((x_1 = p=1+i(√5))),((x_2 = q =1−i(√5))) :}  ⇒by Vieta′s rule  { ((p+q=2)),((pq = 6)) :}  we want to find p^6 +q^6 .  (p^3 )^2 +(q^3 )^2  = [ p^3 +q^3  ]^2 −2(pq)^3    = [ (p+q)^3 −3pq(p+q)]^2 −2(pq)^3   = [ 8−3(6)(2)]^2 −2(6)^3   = [ −28 ]^2 −2(216)  =784−432 = 352 = 2^5 ×11
fromthegivenwehavex22x+6=0hastheroots{x1=p=1+i5x2=q=1i5byVietasrule{p+q=2pq=6wewanttofindp6+q6.(p3)2+(q3)2=[p3+q3]22(pq)3=[(p+q)33pq(p+q)]22(pq)3=[83(6)(2)]22(6)3=[28]22(216)=784432=352=25×11
Commented by bobhans last updated on 09/Apr/21
request mr Liki
requestmrLiki
Commented by SLVR last updated on 09/Apr/21
sir what is Vieta Rule..please
sirwhatisVietaRule..please
Answered by Rasheed.Sindhi last updated on 09/Apr/21
p+q=(1+i(√5))+(1−i(√5))=2  pq=(1+i(√5))(1−i(√5))=1+5=6  (p+q)^2 =(2)^2   p^2 +q^2 +2pq=4  p^2 +q^2 =4−2(6)=−8  (p^2 +q^2 )^3 =(−8)^3 =−512  p^6 +q^6 +3(pq)^2 (p^2 +q^2 )=−512  p^6 +q^6 =−512−3(6)^2 (−8)                =−2^9 −3.(3^2 .2^2 )(−2^3 )                =−2^9 +3^3 .2^5 =2^5 (−2^4 +3^3 )               =2^5 (−16+27)=2^5 .11
p+q=(1+i5)+(1i5)=2pq=(1+i5)(1i5)=1+5=6(p+q)2=(2)2p2+q2+2pq=4p2+q2=42(6)=8(p2+q2)3=(8)3=512p6+q6+3(pq)2(p2+q2)=512p6+q6=5123(6)2(8)=293.(32.22)(23)=29+33.25=25(24+33)=25(16+27)=25.11
Answered by mathmax by abdo last updated on 10/Apr/21
p^6  +q^6  =(1+i(√5))^6  +(1−i(√5))^6  =Σ_(k=0) ^6 C_6 ^k (i(√5))^k  +Σ_(k=0) ^6  C_6 ^k (−i(√5))^k   =Σ_(k=0) ^6  C_6 ^k (i^k  +(−i)^k )((√5))^k   = Σ_(p=0) ^3 2 C_6 ^(2p)  (−1)^p  .5^p   =2 Σ_(p=0) ^3 (−1)^p  C_6 ^(2p)  .5^p   rest to verify that this Σ is equal to 2^5 ×11....
p6+q6=(1+i5)6+(1i5)6=k=06C6k(i5)k+k=06C6k(i5)k=k=06C6k(ik+(i)k)(5)k=p=032C62p(1)p.5p=2p=03(1)pC62p.5presttoverifythatthisΣisequalto25×11.

Leave a Reply

Your email address will not be published. Required fields are marked *