Menu Close

Given-sin-pi-6-tan-1-x-13-14-If-tan-1-x-tan-1-a-3-b-then-a-b-2-




Question Number 131302 by EDWIN88 last updated on 03/Feb/21
Given sin ((π/6)+tan^(−1) (x))= ((13)/(14))   If tan^(−1) (x)= tan^(−1) (((a(√3))/b)) then    ((a+b)/2) =?
Givensin(π6+tan1(x))=1314Iftan1(x)=tan1(a3b)thena+b2=?
Answered by mr W last updated on 03/Feb/21
t=tan^(−1) x <(π/3) !  sin ((π/6)+t)=((13)/(14))  (1/2)cos t+((√3)/2)sin t=((13)/(14))  cos t+(√3)sin t=((13)/7)  u=cos t  (√(3(1−u^2 )))=((13)/7)−u  3(1−u^2 )=((169)/(49))+u^2 −((26)/7)u  2u^2 −((13)/7)u+((11)/(49))=0  u=(1/4)(((13±9)/7))=((11)/(14)), (1/7)  tan t=(√((1/(cos^2  t))−1))=((5(√3))/(11)), 4(√3)>(√3) ! rejected  ⇒t=tan^(−1) ((5(√3))/(11))  tan^(−1) x=t=tan^(−1) ((5(√3))/(11))  ⇒a=5, b=11  ⇒((a+b)/2)=8
t=tan1x<π3!sin(π6+t)=131412cost+32sint=1314cost+3sint=137u=cost3(1u2)=137u3(1u2)=16949+u2267u2u2137u+1149=0u=14(13±97)=1114,17tant=1cos2t1=5311,43>3!rejectedt=tan15311tan1x=t=tan15311a=5,b=11a+b2=8