Menu Close

Given-system-equation-x-2-3xy-y-2-1-0-x-3-y-3-7-0-has-solution-x-1-y-1-amp-x-2-y-2-for-x-y-R-Find-the-value-of-x-1-2-y-2-x-2-2-y-1-




Question Number 136749 by EDWIN88 last updated on 25/Mar/21
Given system equation     { ((x^2 +3xy+y^2 +1=0)),((x^3 +y^3 −7=0)) :} has solution   (x_1 ,y_1 ) &(x_2 ,y_2 ) for x,y∈R. Find the value  of x_1 ^2 .y_2  +x_2 ^2 .y_1 .
Givensystemequation{x2+3xy+y2+1=0x3+y37=0hassolution(x1,y1)&(x2,y2)forx,yR.Findthevalueofx12.y2+x22.y1.
Answered by MJS_new last updated on 25/Mar/21
x=u−v∧y=u+v   { ((5u^2 −v^2 +1=0 ⇒ v^2 =5u^2 +1)),((2u^3 +6uv^2 −7=0)) :}  2u^3 +6u(5u^2 +1)−7=0  u^3 +(3/(16))u−(7/(32))=0  u=(1/2)∨u=−(1/4)±((√6)/4)i  now it′s easy to complete
x=uvy=u+v{5u2v2+1=0v2=5u2+12u3+6uv27=02u3+6u(5u2+1)7=0u3+316u732=0u=12u=14±64inowitseasytocomplete
Answered by bramlexs22 last updated on 26/Mar/21
 { (((x+y)^2 +xy+1=0)),(((x+y)^3 −3xy(x+y)−7=0)) :}  set  { ((x+y=u)),((xy=w)) :}⇔  { ((u^2 +w+1=0)),((u^3 −3uw−7=0)) :}  substitute w=−u^2 −1  we get u^3 −3u(−u^2 −1)−7=0  ⇒ 4u^3 +3u−7=0  ⇒(u−1)(4u^2 +4u+7)=0  for 4u^2 +4u+7 = 0  rejected   we get u=1 ∧ w −2  so we find  { ((x+y=1)),((xy=−2)) :} ; y=1−x  substitute y=1−x gives  ⇒x(1−x)=−2 ; x^2 −x−2=0    (x−2)(x+1)=0   { ((x_1 =−1⇒y_1 =2)),((x_2 =2⇒y_2 =−1)) :}
{(x+y)2+xy+1=0(x+y)33xy(x+y)7=0set{x+y=uxy=w{u2+w+1=0u33uw7=0substitutew=u21wegetu33u(u21)7=04u3+3u7=0(u1)(4u2+4u+7)=0for4u2+4u+7=0rejectedwegetu=1w2sowefind{x+y=1xy=2;y=1xsubstitutey=1xgivesx(1x)=2;x2x2=0(x2)(x+1)=0{x1=1y1=2x2=2y2=1

Leave a Reply

Your email address will not be published. Required fields are marked *