Menu Close

given-that-1-2pi-e-t-2-2-2-dt-1-and-g-n-u-1-2pi-x-u-n-e-t-2-2-2-dt-and-f-n-u-1-2pi-t-u-n-e-t-




Question Number 697 by 123456 last updated on 02/Mar/15
given that (1/(σ(√(2π))))∫_(−∞) ^(+∞) e^(−(((t−μ)^2 )/(2σ^2 ))) dt=1  and g(n,u)=(1/(σ(√(2π)))) ∫_(−∞) ^(+∞) (x−u)^n e^(−(((t−μ)^2 )/(2σ^2 ))) dt  and f(n,u)=(1/(σ(√(2π))))∫_(−∞) ^(+∞) (t−u)^n e^(−(((t−μ)^2 )/(2σ^2 ))) dt  ii. evaluate f(1,0)  iii. evaluate f(2,0)  iv. evaluate f(1,μ)
giventhat1σ2π+e(tμ)22σ2dt=1andg(n,u)=1σ2π+(xu)ne(tμ)22σ2dtandf(n,u)=1σ2π+(tu)ne(tμ)22σ2dtii.evaluatef(1,0)iii.evaluatef(2,0)iv.evaluatef(1,μ)
Commented by prakash jain last updated on 01/Mar/15
f(n,u)=(x−u)^n (1/(σ(√(2π))))∫_(−∞) ^(+∞) e^(−(((t−μ)^2 )/(2σ^2 ))) dt=(x−u)^n   x, n and u are constant for the integration.
f(n,u)=(xu)n1σ2π+e(tμ)22σ2dt=(xu)nx,nanduareconstantfortheintegration.
Answered by prakash jain last updated on 01/Mar/15
f(1,0)=x  f(2,0)=x^2   f(1,μ)=(x−μ)  x,n and μ are constants in the integral.
f(1,0)=xf(2,0)=x2f(1,μ)=(xμ)x,nandμareconstantsintheintegral.

Leave a Reply

Your email address will not be published. Required fields are marked *