Menu Close

Given-that-a-3i-4j-5k-and-b-2i-2j-3k-and-c-6i-7j-8k-find-3a-2b-3c-




Question Number 10862 by Saham last updated on 28/Feb/17
Given that:  a^�  = 3i + 4j + 5k  and  b^�  = 2i + 2j + 3k  and   c^�  = 6i − 7j − 8k.  find  3a^�  + 2b^�  − 3c^�
$$\mathrm{Given}\:\mathrm{that}:\:\:\hat {\mathrm{a}}\:=\:\mathrm{3i}\:+\:\mathrm{4j}\:+\:\mathrm{5k}\:\:\mathrm{and}\:\:\hat {\mathrm{b}}\:=\:\mathrm{2i}\:+\:\mathrm{2j}\:+\:\mathrm{3k}\:\:\mathrm{and}\:\:\:\hat {\mathrm{c}}\:=\:\mathrm{6i}\:−\:\mathrm{7j}\:−\:\mathrm{8k}. \\ $$$$\mathrm{find} \\ $$$$\mathrm{3}\hat {\mathrm{a}}\:+\:\mathrm{2}\hat {\mathrm{b}}\:−\:\mathrm{3}\hat {\mathrm{c}} \\ $$
Commented by Zainal Arifin last updated on 10/May/20
 3i + 4j + 5k  and  b^�  = 2i + 2j + 3k  and   c^�  = 6i − 7j − 8k.
$$\:\mathrm{3i}\:+\:\mathrm{4j}\:+\:\mathrm{5k}\:\:\mathrm{and}\:\:\hat {\mathrm{b}}\:=\:\mathrm{2i}\:+\:\mathrm{2j}\:+\:\mathrm{3k}\:\:\mathrm{and}\:\:\:\hat {\mathrm{c}}\:=\:\mathrm{6i}\:−\:\mathrm{7j}\:−\:\mathrm{8k}. \\ $$
Commented by Zainal Arifin last updated on 10/May/20
3a^�  + 2b^�  − 3c^�
$$\mathrm{3}\hat {\mathrm{a}}\:+\:\mathrm{2}\hat {\mathrm{b}}\:−\:\mathrm{3}\hat {\mathrm{c}} \\ $$$$ \\ $$
Answered by ridwan balatif last updated on 28/Feb/17
3(3i+4j+5k)+2(2i+2j+3k)−3(6i−7j−8k)  (9i+12j+15k)+(4i+4j+6k)−(18i+21j+24k)  −5i−5j−3k
$$\mathrm{3}\left(\mathrm{3i}+\mathrm{4j}+\mathrm{5k}\right)+\mathrm{2}\left(\mathrm{2i}+\mathrm{2j}+\mathrm{3k}\right)−\mathrm{3}\left(\mathrm{6i}−\mathrm{7j}−\mathrm{8k}\right) \\ $$$$\left(\mathrm{9i}+\mathrm{12j}+\mathrm{15k}\right)+\left(\mathrm{4i}+\mathrm{4j}+\mathrm{6k}\right)−\left(\mathrm{18i}+\mathrm{21j}+\mathrm{24k}\right) \\ $$$$−\mathrm{5i}−\mathrm{5j}−\mathrm{3k} \\ $$
Commented by Saham last updated on 28/Feb/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by bar Jesús last updated on 28/Feb/17
    31i+34j−3k
$$ \\ $$$$ \\ $$$$\mathrm{31}{i}+\mathrm{34}{j}−\mathrm{3}{k} \\ $$
Commented by bar Jesús last updated on 28/Feb/17
por determinantes, tomando a,b y c como terminos independientes.  salu2
$${por}\:{determinantes},\:{tomando}\:{a},{b}\:{y}\:{c}\:{como}\:{terminos}\:{independientes}. \\ $$$${salu}\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *