Menu Close

Given-that-a-and-b-are-positive-real-number-such-that-b-lt-4a-1-show-that-2a-b-4a-1-lt-4a-2-b-




Question Number 6257 by 314159 last updated on 20/Jun/16
Given that a and b are positive real number  such that b<4a+1,show that ((2a+b)/(4a+1))<(√(4a^2 +b)) .
Giventhataandbarepositiverealnumbersuchthatb<4a+1,showthat2a+b4a+1<4a2+b.
Answered by Yozzii last updated on 20/Jun/16
((2a+b)/(4a+1))<(√(4a^2 +b))      a,b>0  ⇒(((2a+b)^2 )/((4a+1)^2 ))<4a^2 +b  −−−−−−−−−−−−−−−−−−−−−−−−−−−  Let φ=(((2a+b)^2 )/((4a+1)^2 ))−4a^2 −b.  φ=((4a^2 +4ab+b^2 −(16a^2 +8a+1)(4a^2 +b))/((4a+1)^2 ))  φ=((4a^2 +4ab+b^2 −64a^4 −16a^2 b−32a^3 −8ab−4a^2 −b)/((4a+1)^2 ))  φ=((−64a^4 −16a^2 b−32a^3 −4ab+b(b−1))/((4a+1)^2 ))  Since b<4a+1⇒b−1<4a⇒b(b−1)<4ab  ⇒φ<((−64a^4 −16a^2 b−32a^3 −4ab+4ab)/((4a+1)^2 ))  φ<((−16a^2 (4a^2 +b+2a))/((4a+1)^2 ))  Since a,b>0⇒ 4a^2 +2a+b>0, −16a^2 <0  and (4a+1)^2 >0. Thus, φ<0.  ⇒0<(((2a+b)^2 )/((4a+1)^2 ))<4a^2 +b  ∴ (√((((2a+b)/(4a+1)))^2 ))<(√(4a^2 +b))  ⇒∣((2a+b)/(4a+1))∣<(√(4a^2 +b))  a,b>0⇒ 2a+b>0 and 4a+1>0.  ∴ ((2a+b)/(4a+1))<(√(4a^2 +b)).
2a+b4a+1<4a2+ba,b>0(2a+b)2(4a+1)2<4a2+bLetϕ=(2a+b)2(4a+1)24a2b.ϕ=4a2+4ab+b2(16a2+8a+1)(4a2+b)(4a+1)2ϕ=4a2+4ab+b264a416a2b32a38ab4a2b(4a+1)2ϕ=64a416a2b32a34ab+b(b1)(4a+1)2Sinceb<4a+1b1<4ab(b1)<4abϕ<64a416a2b32a34ab+4ab(4a+1)2ϕ<16a2(4a2+b+2a)(4a+1)2Sincea,b>04a2+2a+b>0,16a2<0and(4a+1)2>0.Thus,ϕ<0.0<(2a+b)2(4a+1)2<4a2+b(2a+b4a+1)2<4a2+b⇒∣2a+b4a+1∣<4a2+ba,b>02a+b>0and4a+1>0.2a+b4a+1<4a2+b.

Leave a Reply

Your email address will not be published. Required fields are marked *