Menu Close

given-that-a-b-and-c-are-positive-numbers-other-than-1-show-that-log-b-a-log-c-b-log-a-c-1-hence-evaluate-log-10-25-log-2-10-log-5-4-




Question Number 68616 by Rio Michael last updated on 14/Sep/19
given that a,b and c are positive numbers other than 1  , show that  log_b a × log_c b × log_a c = 1  hence, evaluate   log_(10) 25 × log_2 10 × log_5 4
giventhata,bandcarepositivenumbersotherthan1,showthatlogba×logcb×logac=1hence,evaluatelog1025×log210×log54
Answered by $@ty@m123 last updated on 14/Sep/19
Let log_b  a=x,  log_c b=y, log_a c=z  ⇒b^x =a, c^y =b, a^z =c  Now,  a^z =c               [((Note: you can proceed)),((with b^x =a or c^y =b also.)) ]  ⇒(b^x )^z =c      ⇒(c^y )^(xz) =c  ⇒c^(xyz) =c  ⇒xyz=1  ⇒log_b a × log_c b × log_a c = 1
Letlogba=x,logcb=y,logac=zbx=a,cy=b,az=cNow,az=c[Note:youcanproceedwithbx=aorcy=balso.](bx)z=c(cy)xz=ccxyz=cxyz=1logba×logcb×logac=1
Answered by $@ty@m123 last updated on 14/Sep/19
Hence  log_(10) 25 × log_2 10 × log_5 4  =2log_(10)  5×log_2 10 ×2 log_5 2  =4(log_(10)  5×log_2 10 ×log_5 2)  =4×1=4
Hencelog1025×log210×log54=2log105×log210×2log52=4(log105×log210×log52)=4×1=4
Commented by Rio Michael last updated on 14/Sep/19
thanks so much
thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *