Menu Close

Given-that-cosecA-cotA-3-evaluate-cosecA-cotA-and-cosA-




Question Number 8310 by lepan last updated on 07/Oct/16
Given that cosecA+cotA=3 evaluate  cosecA−cotA and cosA.
GiventhatcosecA+cotA=3evaluatecosecAcotAandcosA.
Answered by prakash jain last updated on 08/Oct/16
1+cot^2 A=cosec^2 A  ⇒cosec^2 A−cot^2 A=1  ⇒(cosec A+cot A)(cosec A−cot A)=1  Given  cosec A+cot A=3  ⇒3(cosec A−cot A)=1  ⇒(cosec A−cot A)=(1/3)  −−−−−−−−    cosec A+cot A=3  (cosec A−cot A)=(1/3)  2cosec A=3+(1/3)⇒cosec A=(5/3)  cot A=(4/3)  sin A=(3/5)  cos A=±(√(1−sin^2 A))=±(4/5)  since cot A=(4/3)>0  Only valid solution for cos A=(4/5)
1+cot2A=cosec2Acosec2Acot2A=1(cosecA+cotA)(cosecAcotA)=1GivencosecA+cotA=33(cosecAcotA)=1(cosecAcotA)=13cosecA+cotA=3(cosecAcotA)=132cosecA=3+13cosecA=53cotA=43sinA=35cosA=±1sin2A=±45sincecotA=43>0OnlyvalidsolutionforcosA=45

Leave a Reply

Your email address will not be published. Required fields are marked *