Menu Close

Given-that-f-sin-x-cos-x-evaluate-f-sin-45-




Question Number 142844 by ZiYangLee last updated on 06/Jun/21
Given that f(sin x)=cos x, evaluate  f ′(sin 45°).
Giventhatf(sinx)=cosx,evaluatef(sin45°).
Answered by meetbhavsar25 last updated on 06/Jun/21
  f(sin x) = cos x = (√(1−sin^2 x))  so  f(x) = (√(1−x^2 ))  f′(x) = (1/(2(√(1−x^2 ))))×(−2x)  f′(x) = ((−x)/( (√(1−x^2 ))))  f′(sin 45°) = f′((1/( (√2)))) = ((−(1/( (√2))))/( (√(1−(1/2))))) = ((−(1/( (√2))))/(1/( (√2)))) = −1  So, answer is −1.
f(sinx)=cosx=1sin2xsof(x)=1x2f(x)=121x2×(2x)f(x)=x1x2f(sin45°)=f(12)=12112=1212=1So,answeris1.
Answered by Dwaipayan Shikari last updated on 06/Jun/21
f(sinx)=cosx  f′(sinx)cosx=−sinx  f′(sinx)=−tanx ⇒f′(sin45°)=−1
f(sinx)=cosxf(sinx)cosx=sinxf(sinx)=tanxf(sin45°)=1

Leave a Reply

Your email address will not be published. Required fields are marked *