Menu Close

Given-that-f-sin-x-cos-x-evaluate-f-sin-45-




Question Number 142844 by ZiYangLee last updated on 06/Jun/21
Given that f(sin x)=cos x, evaluate  f ′(sin 45°).
$$\mathrm{Given}\:\mathrm{that}\:{f}\left(\mathrm{sin}\:{x}\right)=\mathrm{cos}\:{x},\:\mathrm{evaluate} \\ $$$${f}\:'\left(\mathrm{sin}\:\mathrm{45}°\right). \\ $$
Answered by meetbhavsar25 last updated on 06/Jun/21
  f(sin x) = cos x = (√(1−sin^2 x))  so  f(x) = (√(1−x^2 ))  f′(x) = (1/(2(√(1−x^2 ))))×(−2x)  f′(x) = ((−x)/( (√(1−x^2 ))))  f′(sin 45°) = f′((1/( (√2)))) = ((−(1/( (√2))))/( (√(1−(1/2))))) = ((−(1/( (√2))))/(1/( (√2)))) = −1  So, answer is −1.
$$ \\ $$$${f}\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{cos}\:{x}\:=\:\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}} \\ $$$${so} \\ $$$${f}\left({x}\right)\:=\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${f}'\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}×\left(−\mathrm{2}{x}\right) \\ $$$${f}'\left({x}\right)\:=\:\frac{−{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${f}'\left(\mathrm{sin}\:\mathrm{45}°\right)\:=\:{f}'\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\:=\:\frac{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}{\:\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}}\:=\:\frac{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\:=\:−\mathrm{1} \\ $$$${So},\:{answer}\:{is}\:−\mathrm{1}. \\ $$
Answered by Dwaipayan Shikari last updated on 06/Jun/21
f(sinx)=cosx  f′(sinx)cosx=−sinx  f′(sinx)=−tanx ⇒f′(sin45°)=−1
$${f}\left({sinx}\right)={cosx} \\ $$$${f}'\left({sinx}\right){cosx}=−{sinx} \\ $$$${f}'\left({sinx}\right)=−{tanx}\:\Rightarrow{f}'\left({sin}\mathrm{45}°\right)=−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *