Menu Close

Given-that-sin-x-sin-y-sin-cos-x-cos-y-cos-Show-that-cos-x-y-1-2-




Question Number 10825 by Saham last updated on 26/Feb/17
Given that   sin(x) − sin(y) = sin(θ)  cos(x) + cos(y) = cos(θ)  Show that   cos(x + y) = −(1/2)
$$\mathrm{Given}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\:−\:\mathrm{sin}\left(\mathrm{y}\right)\:=\:\mathrm{sin}\left(\theta\right) \\ $$$$\mathrm{cos}\left(\mathrm{x}\right)\:+\:\mathrm{cos}\left(\mathrm{y}\right)\:=\:\mathrm{cos}\left(\theta\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{cos}\left(\mathrm{x}\:+\:\mathrm{y}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by mrW1 last updated on 26/Feb/17
(sin(x) − sin(y))^2  = sin^2 (θ)  sin^2  (x)−2sin (x)sin (y)+sin^2  (y)=sin^2  (θ)   ...(i)    (cos(x) + cos(y))^2  = cos^2 (θ)  cos^2  (x)+2cos (x)cos (y)+cos^2  (y)=cos^2  (θ)   ...(ii)    (i)+(ii):  sin^2  (x)+cos^2  (x)+2cos (x)cos (y)−2sin (x)sin (y)+sin^2  (y)+cos^2  (y)=sin^2  (θ)+cos^2 (θ)  1+2[cos (x)cos (y)−sin (x)sin (y)]+1=1  1+2cos (x+y)+1=1  ⇒cos (x+y)=−(1/2)
$$\left(\mathrm{sin}\left(\mathrm{x}\right)\:−\:\mathrm{sin}\left(\mathrm{y}\right)\right)^{\mathrm{2}} \:=\:\mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\left({x}\right)−\mathrm{2sin}\:\left({x}\right)\mathrm{sin}\:\left({y}\right)+\mathrm{sin}^{\mathrm{2}} \:\left({y}\right)=\mathrm{sin}^{\mathrm{2}} \:\left(\theta\right)\:\:\:…\left({i}\right) \\ $$$$ \\ $$$$\left(\mathrm{cos}\left(\mathrm{x}\right)\:+\:\mathrm{cos}\left(\mathrm{y}\right)\right)^{\mathrm{2}} \:=\:\mathrm{cos}^{\mathrm{2}} \left(\theta\right) \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\left({x}\right)+\mathrm{2cos}\:\left({x}\right)\mathrm{cos}\:\left({y}\right)+\mathrm{cos}^{\mathrm{2}} \:\left({y}\right)=\mathrm{cos}^{\mathrm{2}} \:\left(\theta\right)\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\left({x}\right)+\mathrm{cos}^{\mathrm{2}} \:\left({x}\right)+\mathrm{2cos}\:\left({x}\right)\mathrm{cos}\:\left({y}\right)−\mathrm{2sin}\:\left({x}\right)\mathrm{sin}\:\left({y}\right)+\mathrm{sin}^{\mathrm{2}} \:\left({y}\right)+\mathrm{cos}^{\mathrm{2}} \:\left({y}\right)=\mathrm{sin}^{\mathrm{2}} \:\left(\theta\right)+\mathrm{cos}^{\mathrm{2}} \left(\theta\right) \\ $$$$\mathrm{1}+\mathrm{2}\left[\mathrm{cos}\:\left({x}\right)\mathrm{cos}\:\left({y}\right)−\mathrm{sin}\:\left({x}\right)\mathrm{sin}\:\left({y}\right)\right]+\mathrm{1}=\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{2cos}\:\left({x}+{y}\right)+\mathrm{1}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:\left({x}+{y}\right)=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Saham last updated on 27/Feb/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *