Menu Close

given-that-sinA-12-13-and-sinB-4-5-where-A-and-B-are-acute-angles-find-cos-A-B-and-sin-A-B-




Question Number 10837 by okhema last updated on 27/Feb/17
given that sinA=((12)/(13))and sinB=(4/5),  where A and B are acute angles,  find cos(A−B) and sin(A+B)
giventhatsinA=1213andsinB=45,whereAandBareacuteangles,findcos(AB)andsin(A+B)
Answered by ridwan balatif last updated on 27/Feb/17
sinA=12/13        sinB=4/5  cosA=5/13          cosB=3/5  cos(A−B)=cosA×cosB+sinA×sinB                           =((5/(13)))×((3/5))+(((12)/(13)))×((4/5))                           =((15)/(65))+((48)/(65))=((63)/(65))  sin(A+B)=sinA×cosB−sinB×cosA                          =((12)/(13))×(3/5)−(4/5)×(5/(13))                          =((36)/(65))−((20)/(65))=((16)/(65))
sinA=12/13sinB=4/5cosA=5/13cosB=3/5cos(AB)=cosA×cosB+sinA×sinB=(513)×(35)+(1213)×(45)=1565+4865=6365sin(A+B)=sinA×cosBsinB×cosA=1213×3545×513=36652065=1665

Leave a Reply

Your email address will not be published. Required fields are marked *