Menu Close

given-that-tan2x-1-4-and-that-angle-x-is-acute-calculate-without-using-a-calculator-the-value-of-these-a-cos2x-b-sinx-




Question Number 10696 by okhema last updated on 23/Feb/17
given that tan2x=(1/4)and that angle x is acute, calculate,without using a calculator the value of these.  (a) cos2x  (b) sinx
$${given}\:{that}\:{tan}\mathrm{2}{x}=\frac{\mathrm{1}}{\mathrm{4}}{and}\:{that}\:{angle}\:{x}\:{is}\:{acute},\:{calculate},{without}\:{using}\:{a}\:{calculator}\:{the}\:{value}\:{of}\:{these}. \\ $$$$\left({a}\right)\:{cos}\mathrm{2}{x} \\ $$$$\left({b}\right)\:{sinx} \\ $$$$ \\ $$
Answered by mrW1 last updated on 23/Feb/17
∴ tan 2x=(1/4)<1  ∵2x<45° and x<22.5°  (a)  cos^2  2x=(1/(1+tan^2  2x))=(1/(1+((1/4))^2 ))=((16)/(17))  cos 2x=(√((16)/(17)))=(4/( (√(17))))    (b)  sin^2  x=((1−cos 2x)/2)=((1−(4/( (√(17)))))/2)=(((√(17))−4)/(2(√(17))))  sin x=(√(((√(17))−4)/(2(√(17)))))=((√(34−8(√(17))))/(2(√(17))))
$$\therefore\:\mathrm{tan}\:\mathrm{2}{x}=\frac{\mathrm{1}}{\mathrm{4}}<\mathrm{1} \\ $$$$\because\mathrm{2}{x}<\mathrm{45}°\:{and}\:{x}<\mathrm{22}.\mathrm{5}° \\ $$$$\left({a}\right) \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}{x}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\mathrm{2}{x}}=\frac{\mathrm{1}}{\mathrm{1}+\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }=\frac{\mathrm{16}}{\mathrm{17}} \\ $$$$\mathrm{cos}\:\mathrm{2}{x}=\sqrt{\frac{\mathrm{16}}{\mathrm{17}}}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{17}}} \\ $$$$ \\ $$$$\left({b}\right) \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}=\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{2}}=\frac{\mathrm{1}−\frac{\mathrm{4}}{\:\sqrt{\mathrm{17}}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{17}}−\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{17}}} \\ $$$$\mathrm{sin}\:{x}=\sqrt{\frac{\sqrt{\mathrm{17}}−\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{17}}}}=\frac{\sqrt{\mathrm{34}−\mathrm{8}\sqrt{\mathrm{17}}}}{\mathrm{2}\sqrt{\mathrm{17}}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *