Menu Close

Given-that-the-function-f-x-x-3-is-differentiable-in-the-interval-2-2-Use-the-mean-value-theorem-to-find-the-value-of-x-for-which-the-tangent-to-the-curve-is-parallel-to-the-chord-through-the-p




Question Number 73542 by Rio Michael last updated on 13/Nov/19
Given that the function f(x)= x^3  is differentiable  in the interval (−2,2), Use the mean value theorem  to find the value of x for which the tangent to the curve  is parallel to the chord through the point (−2,8) and (2,8)
$${Given}\:{that}\:{the}\:{function}\:{f}\left({x}\right)=\:{x}^{\mathrm{3}} \:{is}\:{differentiable} \\ $$$${in}\:{the}\:{interval}\:\left(−\mathrm{2},\mathrm{2}\right),\:{Use}\:{the}\:{mean}\:{value}\:{theorem} \\ $$$${to}\:{find}\:{the}\:{value}\:{of}\:{x}\:{for}\:{which}\:{the}\:{tangent}\:{to}\:{the}\:{curve} \\ $$$${is}\:{parallel}\:{to}\:{the}\:{chord}\:{through}\:{the}\:{point}\:\left(−\mathrm{2},\mathrm{8}\right)\:{and}\:\left(\mathrm{2},\mathrm{8}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *