Menu Close

Given-that-the-series-x-3-y-3-2-x-3-3-y-3-4-x-3-n-1-y-3-n-8-x-y-R-Find-the-value-of-3x-y-




Question Number 143596 by ZiYangLee last updated on 16/Jun/21
Given that the series  (x/3^ )+(y/3^2 )+(x/3^3 )+(y/3^4 )+…+(x/3^(n−1) )+(y/3^n )=8, x,y∈R.  Find the value of 3x+y.
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{{x}}{\mathrm{3}^{} }+\frac{{y}}{\mathrm{3}^{\mathrm{2}} }+\frac{{x}}{\mathrm{3}^{\mathrm{3}} }+\frac{{y}}{\mathrm{3}^{\mathrm{4}} }+\ldots+\frac{{x}}{\mathrm{3}^{{n}−\mathrm{1}} }+\frac{{y}}{\mathrm{3}^{{n}} }=\mathrm{8},\:{x},{y}\in\mathbb{R}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{3}{x}+{y}. \\ $$
Answered by bobhans last updated on 16/Jun/21
S_1 =x((1/3)+(1/3^3 )+(1/3^5 )+...)=x(((1/3)/(8/9)))=((3x)/8)  S_2 =y((1/3^2 )+(1/3^4 )+(1/3^6 )+...)=y(((1/9)/(8/9)))=(y/8)  ⇒ ((3x+y)/8)=8⇒3x+y=64
$${S}_{\mathrm{1}} ={x}\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }+…\right)={x}\left(\frac{\mathrm{1}/\mathrm{3}}{\mathrm{8}/\mathrm{9}}\right)=\frac{\mathrm{3}{x}}{\mathrm{8}} \\ $$$${S}_{\mathrm{2}} ={y}\left(\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{6}} }+…\right)={y}\left(\frac{\mathrm{1}/\mathrm{9}}{\mathrm{8}/\mathrm{9}}\right)=\frac{{y}}{\mathrm{8}} \\ $$$$\Rightarrow\:\frac{\mathrm{3}{x}+{y}}{\mathrm{8}}=\mathrm{8}\Rightarrow\mathrm{3}{x}+{y}=\mathrm{64} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *