Menu Close

Given-that-the-velocity-v-of-a-body-t-seconds-after-passing-a-point-O-is-found-by-v-2-1-k-P-P-kv-o-2-e-2kt-m-determine-the-distance-covered-by-the-body-one-hour-after-passing-




Question Number 896 by 112358 last updated on 15/Apr/15
Given that the velocity v of a body  t seconds after passing a point O  is found by          v^2 =(1/k)[P−(P−kv_o ^2 )e^(−((2kt)/m)) ]  determine the distance covered  by the body  one hour after   passing O. The body moves along  a straight line. k,P,v_o  and m  are constants and t is measured in  seconds.
GiventhatthevelocityvofabodytsecondsafterpassingapointOisfoundbyv2=1k[P(Pkvo2)e2ktm]determinethedistancecoveredbythebodyonehourafterpassingO.Thebodymovesalongastraightline.k,P,voandmareconstantsandtismeasuredinseconds.
Commented by 123456 last updated on 15/Apr/15
∫_0 ^(3600) (√((1/k)[P−(P−kv_0 ^2 )e^(−((2kt)/m)) ]))dt  ∫_0 ^(3600) (√((P/k)−((P−kv_0 ^2 )/k)e^(−((2kt)/m)) ))dt  ∫_0 ^(3600) (√(α+βe^(γt) ))dt  α=(P/k)  β=((kv_0 ^2 −P)/k)  γ=−((2k)/m)
360001k[P(Pkv02)e2ktm]dt36000PkPkv02ke2ktmdt36000α+βeγtdtα=Pkβ=kv02Pkγ=2km
Commented by prakash jain last updated on 16/Apr/15
∫(√(α+βe^(γx) )) dx=((2((√(α+βe^(γx) ))−(√α)tanh^(−1) (((√(α+βe^(γx) ))/( (√α))))))/γ)
α+βeγxdx=2(α+βeγxαtanh1(α+βeγxα))γ

Leave a Reply

Your email address will not be published. Required fields are marked *