Menu Close

Given-that-y-4-x-3-1-show-that-2-x-3-1-dy-dx-3x-2-y-




Question Number 70583 by Raphael last updated on 05/Oct/19
Given that y=(4/( (√((x^3 +1))))) show that 2(x^3 +1)(dy/dx)=−3x^2 y.
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{y}=\frac{\mathrm{4}}{\:\sqrt{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)}}\:\mathrm{show}\:\mathrm{that}\:\mathrm{2}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{3x}^{\mathrm{2}} \mathrm{y}. \\ $$
Answered by MJS last updated on 05/Oct/19
dy=−((6x^2 )/((x^3 +1)^(3/2) ))dx  2(x^3 +1)(dy/dc)=−((12x^2 )/( (√(x^3 +1))))=−3x^2 (4/( (√(x^3 +1))))=−3x^2 y
$${dy}=−\frac{\mathrm{6}{x}^{\mathrm{2}} }{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }{dx} \\ $$$$\mathrm{2}\left({x}^{\mathrm{3}} +\mathrm{1}\right)\frac{{dy}}{{dc}}=−\frac{\mathrm{12}{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}}=−\mathrm{3}{x}^{\mathrm{2}} \frac{\mathrm{4}}{\:\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}}=−\mathrm{3}{x}^{\mathrm{2}} {y} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *