Menu Close

given-that-y-Acos5x-Bsin5x-show-that-d-2-y-dx-2-25y-0-




Question Number 11921 by carrot last updated on 05/Apr/17
given that y=Acos5x + Bsin5x,  show that (d^2 y/dx^2 )+25y=0
$${given}\:{that}\:{y}={Acos}\mathrm{5}{x}\:+\:{Bsin}\mathrm{5}{x}, \\ $$$${show}\:{that}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{25}{y}=\mathrm{0} \\ $$
Answered by sandy_suhendra last updated on 05/Apr/17
(dy/dx)=−5Asin5x + 5Bcos5x  (d^2 y/dx^2 )=−25Acos5x−25Bsin5x=−25(Acos5x+Bsin5x)        (d^2 y/dx^2 )+25y  =−25(Acos5x+Bsin5x)+25(Acos5x+Bsin5x)       =0
$$\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{5Asin5x}\:+\:\mathrm{5Bcos5x} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }=−\mathrm{25Acos5x}−\mathrm{25Bsin5x}=−\mathrm{25}\left(\mathrm{Acos5x}+\mathrm{Bsin5x}\right)\:\:\:\: \\ $$$$ \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{25y} \\ $$$$=−\mathrm{25}\left(\mathrm{Acos5x}+\mathrm{Bsin5x}\right)+\mathrm{25}\left(\mathrm{Acos5x}+\mathrm{Bsin5x}\right)\:\:\:\:\: \\ $$$$=\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *