Menu Close

Given-that-Z-0-1-2-all-integers-0-R-0-0-01-1-1-01-all-reals-0-Prove-that-R-gt-Z-




Question Number 1875 by Filup last updated on 20/Oct/15
Given that:  Z={0, 1, 2, ...} all integers ≥0  R={0, 0.01, ..., 1, 1.01, ...} all reals ≥0   Prove that ∣R∣>∣Z∣
$$\mathrm{Given}\:\mathrm{that}: \\ $$$${Z}=\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:…\right\}\:\mathrm{all}\:\mathrm{integers}\:\geqslant\mathrm{0} \\ $$$${R}=\left\{\mathrm{0},\:\mathrm{0}.\mathrm{01},\:…,\:\mathrm{1},\:\mathrm{1}.\mathrm{01},\:…\right\}\:\mathrm{all}\:\mathrm{reals}\:\geqslant\mathrm{0} \\ $$$$\:\mathrm{Prove}\:\mathrm{that}\:\mid{R}\mid>\mid{Z}\mid \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *