Menu Close

Given-that-Z-and-H-are-complex-number-obtain-the-real-and-imaginary-of-Z-H-




Question Number 7748 by Tawakalitu. last updated on 13/Sep/16
Given that Z and H are complex number.   obtain the real and imaginary of Z^H
GiventhatZandHarecomplexnumber.obtaintherealandimaginaryofZH
Answered by Yozzia last updated on 13/Sep/16
Let Z=re^(iθ) , H=c+di  (r,θ,c,d∈R, r>0, i=(√(−1))).  Z^H =(re^(iθ) )^(c+di) =r^(c+di) e^(iθ(c+di))   Z^H =e^((c+di)lnr) e^(cθi−dθ)               {∵ r=e^(lnr) }  Z^H =e^(clnr) e^(idlnr) e^(−θd) e^(ciθ)   Z^H =e^(clnr−θd) e^(idlnr+ciθ)   Z^H =e^(clnr−θd) e^(i(dlnr+cθ))   By Euler′s formula,  Z^H =e^(clnr−θd) {cos(dlnr+cθ)+isin(dlnr+cθ)}  ⇒Re(Z^H )=e^(clnr−dθ) cos(dlnr+cθ)  & Im(Z^H )=e^(clnr−dθ) sin(dlnr+cθ)  θ=argument of Z, r=modulus of Z.  Also, arg(Z^H )=dlnr+cθ   & ∣Z^H ∣=e^(clnr−dθ) =e^(−dθ) e^(lnr^c ) =r^c e^(−dθ)
LetZ=reiθ,H=c+di(r,θ,c,dR,r>0,i=1).ZH=(reiθ)c+di=rc+dieiθ(c+di)ZH=e(c+di)lnrecθidθ{r=elnr}ZH=eclnreidlnreθdeciθZH=eclnrθdeidlnr+ciθZH=eclnrθdei(dlnr+cθ)ByEulersformula,ZH=eclnrθd{cos(dlnr+cθ)+isin(dlnr+cθ)}Re(ZH)=eclnrdθcos(dlnr+cθ)&Im(ZH)=eclnrdθsin(dlnr+cθ)θ=argumentofZ,r=modulusofZ.Also,arg(ZH)=dlnr+cθ&ZH∣=eclnrdθ=edθelnrc=rcedθ
Commented by Tawakalitu. last updated on 13/Sep/16
Wow, i really appreciate sir. thank you sir.
Wow,ireallyappreciatesir.thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *