Menu Close

Given-the-equation-1000-2000-1-1-t-n-t-find-the-value-of-t-




Question Number 144049 by physicstutes last updated on 20/Jun/21
 Given the equation  1000 = 2000(((1−(1+t)^(−n) )/t))  find the value of t.
$$\:\mathrm{Given}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{1000}\:=\:\mathrm{2000}\left(\frac{\mathrm{1}−\left(\mathrm{1}+{t}\right)^{−{n}} }{{t}}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{t}. \\ $$
Answered by Olaf_Thorendsen last updated on 21/Jun/21
1000 = 2000(((1−(1+t)^(−n) )/t))  ((1−(1+t)^(−n) )/t) = (1/2)  (1/(1+t)).((1−((1/(1+t)))^n )/(1−(1/(1+t)))) = (1/2)  q(1−q^n ) = (1/2)(1−q)  Let q = (1/(1+t))  q^(n+1) −(3/2)q+(1/2) = 0
$$\mathrm{1000}\:=\:\mathrm{2000}\left(\frac{\mathrm{1}−\left(\mathrm{1}+{t}\right)^{−{n}} }{{t}}\right) \\ $$$$\frac{\mathrm{1}−\left(\mathrm{1}+{t}\right)^{−{n}} }{{t}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{t}}.\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{1}+{t}}\right)^{{n}} }{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${q}\left(\mathrm{1}−{q}^{{n}} \right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{q}\right) \\ $$$$\mathrm{Let}\:{q}\:=\:\frac{\mathrm{1}}{\mathrm{1}+{t}} \\ $$$${q}^{{n}+\mathrm{1}} −\frac{\mathrm{3}}{\mathrm{2}}{q}+\frac{\mathrm{1}}{\mathrm{2}}\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *