Menu Close

Given-the-function-f-defined-by-f-x-2e-x-e-x-1-x-0-0-x-0-i-study-the-differentiability-of-f-at-x-0-ii-Show-that-the-point-0-1-is-the-centre-of-symetry-to-the-cur




Question Number 141340 by physicstutes last updated on 17/May/21
Given the function f defined by   f(x) =  { ((((2e^x )/(e^x −1)),x≠ 0)),((0, x = 0)) :}  (i) study the differentiability of f at x = 0.  (ii) Show that the point (0,1) is the centre of symetry to the  curve of f.
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\:\mathrm{defined}\:\mathrm{by} \\ $$$$\:{f}\left({x}\right)\:=\:\begin{cases}{\frac{\mathrm{2}{e}^{{x}} }{{e}^{{x}} −\mathrm{1}},{x}\neq\:\mathrm{0}}\\{\mathrm{0},\:{x}\:=\:\mathrm{0}}\end{cases} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{study}\:\mathrm{the}\:\mathrm{differentiability}\:\mathrm{of}\:{f}\:\mathrm{at}\:{x}\:=\:\mathrm{0}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{1}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{symetry}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{curve}\:\mathrm{of}\:{f}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *