Menu Close

Given-the-function-f-x-0-x-1-t-3-1-2-dt-If-h-x-is-the-inverse-of-f-x-and-h-x-is-derivative-of-h-x-Find-the-value-of-h-x-h-x-2-




Question Number 132076 by liberty last updated on 11/Feb/21
Given the function f(x)=∫_0 ^( x) (1+t^3 )^(−1/2) dt.  If h(x) is the inverse of f(x) and h′(x)  is derivative of h(x). Find the   value of ((h′′(x))/((h(x))^2 )) .
Giventhefunctionf(x)=0x(1+t3)1/2dt.Ifh(x)istheinverseoff(x)andh(x)isderivativeofh(x).Findthevalueofh(x)(h(x))2.
Answered by EDWIN88 last updated on 11/Feb/21
We have f(x)=∫_0 ^( x) (1+t^3 )^(−1/2)  dt , then   f(g(x))= ∫_0 ^(g(x)) (1+t^3 )^(−1/2)  dt   x = ∫_0 ^( g(x)) (1+t^3 )^(−1/2)  dt    differentiating both sides    1 = (1+(g(x)^3 )^(−1/2) g′(x) squaring both sides  1=(1+g(x)^3 )^(−1) (g′(x))^2 ⇒(g′(x))^2 =1+g(x)^3   differentiating again   2g′(x).g′′(x)=3g(x)^2 .g′(x)⇒g′′(x)=(3/2)(g(x))^2   thus we find ((g′′(x))/(g^2 (x))) = (3/2)
Wehavef(x)=0x(1+t3)1/2dt,thenf(g(x))=0g(x)(1+t3)1/2dtx=0g(x)(1+t3)1/2dtdifferentiatingbothsides1=(1+(g(x)3)1/2g(x)squaringbothsides1=(1+g(x)3)1(g(x))2(g(x))2=1+g(x)3differentiatingagain2g(x).g(x)=3g(x)2.g(x)g(x)=32(g(x))2thuswefindg(x)g2(x)=32

Leave a Reply

Your email address will not be published. Required fields are marked *