Menu Close

given-the-function-f-x-y-xy-x-1-y-1-show-that-f-x-y-has-some-0-1-as-a-stationery-point-use-tylor-series-method-to-determine-whether-0-1-is-a-minima-maxima-or-saddle-point-




Question Number 131734 by LYKA last updated on 07/Feb/21
given the function          f(x.y)=xy(x−1)(y−1)  show that f(x.y) has some (0,1)  as a stationery point    use tylor series method to   determine whether (0.1) is a  minima ,maxima or saddle   point
$$\boldsymbol{{given}}\:\boldsymbol{{the}}\:\boldsymbol{{function}} \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}.\boldsymbol{{y}}\right)=\boldsymbol{{xy}}\left(\boldsymbol{{x}}−\mathrm{1}\right)\left(\boldsymbol{{y}}−\mathrm{1}\right) \\ $$$$\boldsymbol{{show}}\:\boldsymbol{{that}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}.\boldsymbol{{y}}\right)\:\boldsymbol{{has}}\:\boldsymbol{{some}}\:\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\boldsymbol{{as}}\:\boldsymbol{{a}}\:\boldsymbol{{stationery}}\:\boldsymbol{{point}} \\ $$$$ \\ $$$$\boldsymbol{{use}}\:\boldsymbol{{tylor}}\:\boldsymbol{{series}}\:\boldsymbol{{method}}\:\boldsymbol{{to}}\: \\ $$$$\boldsymbol{{determine}}\:\boldsymbol{{whether}}\:\left(\mathrm{0}.\mathrm{1}\right)\:\boldsymbol{{is}}\:\boldsymbol{{a}} \\ $$$$\boldsymbol{{minima}}\:,\boldsymbol{{maxima}}\:\boldsymbol{{or}}\:\boldsymbol{{saddle}}\: \\ $$$$\boldsymbol{{point}} \\ $$
Answered by guyyy last updated on 11/Feb/21

Leave a Reply

Your email address will not be published. Required fields are marked *