Menu Close

Given-the-increasing-sequence-1-4-8-13-a-Find-U-2019-b-Find-S-2019-U-n-is-nth-term-of-the-sequence-S-n-is-sum-of-n-term-of-the-sequence-Arithmetic-Sequence-Deg




Question Number 75818 by naka3546 last updated on 18/Dec/19
Given  the  increasing  sequence :  1, 4, 8, 13, ...  a. Find  U_(2019)   b. Find  S_(2019)   U_n   is  nth−term  of  the  sequence  S_n   is  sum  of  n − term  of  the  sequence  Arithmetic  Sequence  Degree  Two
Giventheincreasingsequence:1,4,8,13,a.FindU2019b.FindS2019UnisnthtermofthesequenceSnissumofntermofthesequenceArithmeticSequenceDegreeTwo
Commented by MJS last updated on 18/Dec/19
the sequence is not unique  1+3=4  4+4=8  8+5=13  the next terms are  13+6=19  19+7=26  ...    1+4+8=13  the next terms are  4+8+13=25  8+13+25=46  ...    it′s possible to find a zillion more...
thesequenceisnotunique1+3=44+4=88+5=13thenexttermsare13+6=1919+7=261+4+8=13thenexttermsare4+8+13=258+13+25=46itspossibletofindazillionmore
Commented by MJS last updated on 18/Dec/19
not really  in some cases if we do not know what we are  supposed to do we cannot give a proper  answer
notreallyinsomecasesifwedonotknowwhatwearesupposedtodowecannotgiveaproperanswer
Commented by $@ty@m123 last updated on 18/Dec/19
Its exaggeration.
Itsexaggeration.
Answered by $@ty@m123 last updated on 18/Dec/19
S_n =1+4+8+13+.....+U_n   S_n =       1+4+8+13+.....+U_n   Subtracting,  0=1+3+4+5+6+.....+(U_n −U_(n−1) )−U_n   U_n =1+3+4+5+6+.....+(U_n −U_(n−1) )  U_n =1+2+3+4+5+6+.....+(U_n −U_(n−1) )−2  U_n =(((n−1).n)/2) −2 ......(1)  U_(2019) =((2018×2019)/2)−2   U_(2019) =1009×2019−2=2037169  S_n =ΣU_n   =(1/2)(Σn^2 −Σn)−Σ2  =(1/2){((n(n+1)(2n+1))/6)−((n(n+1))/2)}−2n  =((n(n+1))/4){(((2n+1))/3)−1}−2n  Put n=2019 & calculate.
Sn=1+4+8+13+..+UnSn=1+4+8+13+..+UnSubtracting,0=1+3+4+5+6+..+(UnUn1)UnUn=1+3+4+5+6+..+(UnUn1)Un=1+2+3+4+5+6+..+(UnUn1)2Un=(n1).n22(1)U2019=2018×201922U2019=1009×20192=2037169Sn=ΣUn=12(Σn2Σn)Σ2=12{n(n+1)(2n+1)6n(n+1)2}2n=n(n+1)4{(2n+1)31}2nPutn=2019&calculate.

Leave a Reply

Your email address will not be published. Required fields are marked *