Menu Close

Given-the-matrix-A-1-1-1-0-2-1-2-3-0-and-B-3-3-1-2-2-1-4-5-2-find-the-matrix-product-AB-and-BA-state-the-relationship-between-A-and-B-find-also-the-matri




Question Number 75099 by Rio Michael last updated on 07/Dec/19
Given the matrix   A =  ((1,(−1),1),(0,2,( −1)),(2,3,0) )  and B=  ((3,3,(−1)),((−2),(−2),1),((−4),(−5),2) )  find the matrix product AB and BA  state the relationship between A and B  find also the matrix product BM, where M= ((8),((−7)),(1) )  Hence solve the system of equations:    x−y + z = 8,         2y −z =−7,    2x + 3y = 1.
GiventhematrixA=(111021230)andB=(331221452)findthematrixproductABandBAstatetherelationshipbetweenAandBfindalsothematrixproductBM,whereM=(871)Hencesolvethesystemofequations:xy+z=8,2yz=7,2x+3y=1.
Commented by kaivan.ahmadi last updated on 07/Dec/19
Commented by kaivan.ahmadi last updated on 07/Dec/19
Commented by kaivan.ahmadi last updated on 07/Dec/19
Commented by Rio Michael last updated on 07/Dec/19
nice sir thanks
nicesirthanks
Answered by Kunal12588 last updated on 07/Dec/19
A= [((   1),(−1),(   1)),((   0),(   2),(−1)),((   2),(   3),(   0)) ], B= [((   3),(   3),(−1)),((−2),(−2),(   1)),((−4),(−5),(   2)) ]  AB= [((3+2−4),(3+2−5),(−1−1+2)),((0−4+4),(0−4+5),(     0+2−2)),((6−6+0),(6−6+0),(−2+3+0)) ]  ⇒AB= [(1,0,0),(0,1,0),(0,0,1) ]= I  BA= [((     3+0−2),(−3+6−3),(    3−3+0)),((−2+0+2),(     2−4+3),(−2+2+0)),((−4+0+4),(  4−10+6),(−4+5+0)) ]  ⇒BA= [(1,0,0),(0,1,0),(0,0,1) ]= I  ∵AB=BA=I⇒A^(−1) =B & B^(−1) =A  M= [((   8)),((−7)),((   1)) ]  BM= [((   3),(   3),(−1)),((−2),(−2),(   1)),((−4),(−5),(   2)) ]_(3×3)  [((   8)),((−7)),((   1)) ]_(3×1)   ⇒BM= [((    24−21−1)),((−16+14+1)),((−32+35+2)) ]= [((   2)),((−1)),((   5)) ]  given eq^n  can be written as   [((   1),(−1),(   1)),((   0),(   2),(−1)),((   2),(   3),(   0)) ] [(x),(y),(z) ]= [((   8)),((−7)),((   1)) ]  ⇒AX=M     ; with X= [(x),(y),(z) ]  ⇒A^(−1) AX=A^(−1) M  ⇒IX=A^(−1) M  ⇒X=BM      [∵ A^(−1) =B proved above]  ⇒ [(x),(y),(z) ]= [((   2)),((−1)),((   5)) ]  ⇒x=2,y=−1 & z=5
A=[111021230],B=[331221452]AB=[3+243+2511+204+404+50+2266+066+02+3+0]AB=[100010001]=IBA=[3+023+6333+02+0+224+32+2+04+0+4410+64+5+0]BA=[100010001]=IAB=BA=IA1=B&B1=AM=[871]BM=[331221452]3×3[871]3×1BM=[2421116+14+132+35+2]=[215]giveneqncanbewrittenas[111021230][xyz]=[871]AX=M;withX=[xyz]A1AX=A1MIX=A1MX=BM[A1=Bprovedabove][xyz]=[215]x=2,y=1&z=5
Commented by Rio Michael last updated on 07/Dec/19
thanks so much sir
thankssomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *