Menu Close

Given-triangle-ABC-what-is-the-maximum-value-of-y-2cosA-cosB-cosC-




Question Number 137038 by bobhans last updated on 29/Mar/21
  Given triangle ABC, what is the maximum value of y=2cosA + cosB + cosC?
$$ \\ $$Given triangle ABC, what is the maximum value of y=2cosA + cosB + cosC?
Answered by mr W last updated on 29/Mar/21
A=π−(B+C)  y=−2 cos (B+C)+cos B+cos C  due to symmetry: B=C=x  y=−2 cos 2x+2 cos x  y=−4 cos^2  x+2+2 cos x)  y=(9/4)−(4 cos^2  x−2 cos x+(1/4))  y=(9/4)−(2 cos x−(1/2))^2   y_(max) =(9/4) when B=C=x=cos^(−1) (1/4)
$${A}=\pi−\left({B}+{C}\right) \\ $$$${y}=−\mathrm{2}\:\mathrm{cos}\:\left({B}+{C}\right)+\mathrm{cos}\:{B}+\mathrm{cos}\:{C} \\ $$$${due}\:{to}\:{symmetry}:\:{B}={C}={x} \\ $$$${y}=−\mathrm{2}\:\mathrm{cos}\:\mathrm{2}{x}+\mathrm{2}\:\mathrm{cos}\:{x} \\ $$$$\left.{y}=−\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:{x}+\mathrm{2}+\mathrm{2}\:\mathrm{cos}\:{x}\right) \\ $$$${y}=\frac{\mathrm{9}}{\mathrm{4}}−\left(\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:{x}−\mathrm{2}\:\mathrm{cos}\:{x}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$${y}=\frac{\mathrm{9}}{\mathrm{4}}−\left(\mathrm{2}\:\mathrm{cos}\:{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${y}_{{max}} =\frac{\mathrm{9}}{\mathrm{4}}\:{when}\:{B}={C}={x}=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by bobhans last updated on 29/Mar/21
why B and C symetri sir
$$\mathrm{why}\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{symetri}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 29/Mar/21
in the function  y=−2 cos (B+C)+cos B+cos C  you can exchange B and C and the  function remains the same. when   such a function has maximum or   minimum, then B=C.
$${in}\:{the}\:{function} \\ $$$${y}=−\mathrm{2}\:\mathrm{cos}\:\left({B}+{C}\right)+\mathrm{cos}\:{B}+\mathrm{cos}\:{C} \\ $$$${you}\:{can}\:{exchange}\:{B}\:{and}\:{C}\:{and}\:{the} \\ $$$${function}\:{remains}\:{the}\:{same}.\:{when}\: \\ $$$${such}\:{a}\:{function}\:{has}\:{maximum}\:{or}\: \\ $$$${minimum},\:{then}\:{B}={C}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *