Menu Close

Given-vector-a-i-2j-k-b-2i-j-2k-c-i-3j-k-and-d-2j-2k-Find-the-value-of-a-b-c-d-




Question Number 133925 by bemath last updated on 25/Feb/21
 Given vector a^→  = i^� −2j^� +k^�  ,   b^→ = 2i^� +j^� −2k^�  , c^→ =−i^� +3j^� −k^�   and d^→  = 2j^� −2k^�  . Find the value of  (a^→ ×b^→ )×(c^→ ×d^→ ).
Givenvectora=i^2j^+k^,b=2i^+j^2k^,c=i^+3j^k^andd=2j^2k^.Findthevalueof(a×b)×(c×d).
Answered by EDWIN88 last updated on 25/Feb/21
by use identity : (a×b)×(c×d)= b(acd)−a(bcd)  where acd = a(c×d) and bcd =b(c×d)   (1) c×d =  determinant (((−1      3      −1)),((   0        2      −2)))= −4i−2j−2k  then acd = (1,−2,1).(−4,−2,−2)=−4+4−2=−2  bcd = (2,1,−2).(−4,−2,−2)=−8−2+4=−6  then we get (a×b)×(c×d)=−2b+6a =  (((    6)),((−12)),((     6)) ) − (((   4)),((   2)),((−4)) )   = 2i−14j+10k
byuseidentity:(a×b)×(c×d)=b(acd)a(bcd)whereacd=a(c×d)andbcd=b(c×d)(1)c×d=|131022|=4i2j2kthenacd=(1,2,1).(4,2,2)=4+42=2bcd=(2,1,2).(4,2,2)=82+4=6thenweget(a×b)×(c×d)=2b+6a=(6126)(424)=2i14j+10k
Answered by bemath last updated on 25/Feb/21
(1) a×b =  determinant (((1     −2      1)),((2        1     −2)))= 3i+4j+5k  (2) c×d =  determinant (((−1      3       −1)),((   0       2         −2)))= −4i−2j−2k  then (a×b)×(c×d)=  determinant (((     3       4          5)),((−4   −2      −2)))   = 2i−14j+10k
(1)a×b=|121212|=3i+4j+5k(2)c×d=|131022|=4i2j2kthen(a×b)×(c×d)=|345422|=2i14j+10k

Leave a Reply

Your email address will not be published. Required fields are marked *