Menu Close

Given-x-x-2-1-y-y-2-4-9-find-the-value-of-x-y-2-4-y-x-2-1-




Question Number 138150 by liberty last updated on 10/Apr/21
Given (x+(√(x^2 +1)))(y+(√(y^2 +4)))=9  find the value of          x(√(y^2 +4)) + y(√(x^2 +1)) .
Given(x+x2+1)(y+y2+4)=9findthevalueofxy2+4+yx2+1.
Answered by EDWIN88 last updated on 10/Apr/21
set  { ((x=cot 2α)),((y=2cot 2β)) :} with 0<α,β<π/2  we get  determinant (((x+(√(x^2 +1)) = ((cos 2α)/(sin 2α))+(1/(sin 2α))=cot α)),((y+(√(y^2 +4)) = ((2cos 2β)/(sin 2β))+(2/(sin 2β)) = 2cot β)))  then from the given equation  2cot α.cot β = a   ((cos α cos β)/(sin α sin β)) = (a/2)  we want to compute x(√(y^2 +4)) +y(√(x^2 +1)) =  cot 2α ((2/(sin 2β)))+ 2cot 2β ((1/(sin 2α)))=  ((2(cos 2α+cos 2β))/(sin 2α sin 2β)) = ((cos 2α +cos 2β)/(2(cos α cos β)(sin α sin β)))  = ((2−2sin^2 α−2sin^2 β )/(2((a/2))sin^2 α sin^2 β))   =(2/a) (((1−sin^2 α−sin^2 β)/(sin^2 α sin^2 β)))  = (2/a)((1+cot^2 α)(1+cot^2 β)−1−cot^2 α−1−cot^2 β)  =(2/a)(cot^2 α cot^2 β−1)  =(2/a)((a^2 /4)−1) = (2/a)(((a^2 −4)/4))= ((a^2 −4)/(2a))  in this case a=9 ; we get ((81−4)/(18))=((77)/(18))
set{x=cot2αy=2cot2βwith0<α,β<π/2wegetx+x2+1=cos2αsin2α+1sin2α=cotαy+y2+4=2cos2βsin2β+2sin2β=2cotβthenfromthegivenequation2cotα.cotβ=acosαcosβsinαsinβ=a2wewanttocomputexy2+4+yx2+1=cot2α(2sin2β)+2cot2β(1sin2α)=2(cos2α+cos2β)sin2αsin2β=cos2α+cos2β2(cosαcosβ)(sinαsinβ)=22sin2α2sin2β2(a2)sin2αsin2β=2a(1sin2αsin2βsin2αsin2β)=2a((1+cot2α)(1+cot2β)1cot2α1cot2β)=2a(cot2αcot2β1)=2a(a241)=2a(a244)=a242ainthiscasea=9;weget81418=7718
Commented by liberty last updated on 11/Apr/21
nice
nice
Answered by MJS_new last updated on 10/Apr/21
u=x+(√(x^2 +1)) ⇔ x=((u^2 −1)/(2u))  v=y+(√(y^2 +4)) ⇔ y=((v^2 −4)/(2v))  v=(9/u) ⇒ y=((81−4u^2 )/(18u))  x(√(y^2 +4))+y(√(x^2 +1))=...=((77)/(18))
u=x+x2+1x=u212uv=y+y2+4y=v242vv=9uy=814u218uxy2+4+yx2+1==7718
Commented by liberty last updated on 11/Apr/21
short cut?
shortcut?
Commented by MJS_new last updated on 11/Apr/21
well I guess it′s not necessary to type all the  algebraic steps...  btw. we can also solve the given equation  for y:  X(y+(√(y^2 +4)))=9 ⇒ y=((81−4X^2 )/(18X))=((−85x+77(√(x^2 +1)))/(18))  ⇒ x(√(y^2 +4))+y(√(x^2 +1))=...=((77)/(18))
wellIguessitsnotnecessarytotypeallthealgebraicstepsbtw.wecanalsosolvethegivenequationfory:X(y+y2+4)=9y=814X218X=85x+77x2+118xy2+4+yx2+1==7718
Commented by SLVR last updated on 11/Apr/21
this part of solution is marvoles
thispartofsolutionismarvoles

Leave a Reply

Your email address will not be published. Required fields are marked *