Menu Close

Given-x-y-R-x-y-0-Find-the-maximum-and-minimum-value-of-xy-4y-2-x-2-4y-2-




Question Number 132753 by liberty last updated on 16/Feb/21
Given x,y ∈R , x,y≠ 0  Find the maximum and minimum  value of ((xy−4y^2 )/(x^2 +4y^2 ))
Givenx,yR,x,y0Findthemaximumandminimumvalueofxy4y2x2+4y2
Commented by mr W last updated on 16/Feb/21
min=−(((√5)+2)/4)  max=(((√5)−2)/4)
min=5+24max=524
Commented by liberty last updated on 16/Feb/21
step?
step?
Answered by EDWIN88 last updated on 16/Feb/21
let z=f(x,y) = ((xy−4y^2 )/(x^2 +4y^2 ))  (1) (∂z/∂x) = ((y(x^2 +4y^2 )−2x(xy−4y^2 ))/((x^2 +4y^2 )^2 )) = 0   we get x^2 y+4y^3 −2x^2 y+8xy^2 = 0...(i)                 4y^3 −x^2 y+8xy^2  = 0  (2) (∂z/∂y) = (((x−8y)(x^2 +4y^2 )−8y(xy−4y^2 ))/((x^2 +4y^2 )^2 ))= 0  we get x^3 +4xy^2 −8x^2 y−32y^3 −8xy^2 +32y^3  = 0      x^3 −4xy^2 −8xy = 0 or x^2 −4y^2 −8y = 0 ...(ii)  adding (1) and (2)  ⇒ 8xy−8y = 0 ⇒x = 1  and 4y^2 +8y−1=0   y = −1± ((√5)/2) then critical point is   A(1,−1+((√5)/2) ) and B = (1,−1−((√5)/2))  for A⇒ z=((y(x−4y))/(x^2 +4y^2 )) = (((√5)−2)/4) ≈ 0.05901  for B⇒z=((−(√5)−2)/4) ≈ −1.05901
letz=f(x,y)=xy4y2x2+4y2(1)zx=y(x2+4y2)2x(xy4y2)(x2+4y2)2=0wegetx2y+4y32x2y+8xy2=0(i)4y3x2y+8xy2=0(2)zy=(x8y)(x2+4y2)8y(xy4y2)(x2+4y2)2=0wegetx3+4xy28x2y32y38xy2+32y3=0x34xy28xy=0orx24y28y=0(ii)adding(1)and(2)8xy8y=0x=1and4y2+8y1=0y=1±52thencriticalpointisA(1,1+52)andB=(1,152)forAz=y(x4y)x2+4y2=5240.05901forBz=5241.05901
Commented by EDWIN88 last updated on 16/Feb/21
yes sir. thank you
yessir.thankyou
Commented by liberty last updated on 16/Feb/21
waw...
waw
Commented by liberty last updated on 16/Feb/21
z = (((y/x)−4((y/x))^2 )/(1+4((y/x))^2 ))= (((((√5)−2)/2)−4((((√5)−2)/2))^2 )/(1+4((((√5)−2)/2))^2 ))   z= (((((√5)−2)/2)−(9−4(√5)))/(1+9−4(√5))) = (((√5)−2−18+8(√5))/(20−8(√5)))  z = ((9(√5)−20)/(20−8(√5))) × ((20+8(√5))/(20+8(√5)))   z= ((20(√5)+360−400)/(400−320))=((20(√5)−40)/(80))   z= (((√5)−2)/4) sir
z=yx4(yx)21+4(yx)2=5224(522)21+4(522)2z=522(945)1+945=5218+852085z=95202085×20+8520+85z=205+360400400320=2054080z=524sir
Answered by mr W last updated on 16/Feb/21
let k=((xy−4y^2 )/(x^2 +4y^2 ))=((1−4((y/x)))/(((x/y))+4((y/x))))=((1−4t)/((1/t)+4t))=((t−4t^2 )/(1+4t^2 ))  with t=(y/x)∈R  k+4kt^2 =t−4t^2   4(k+1)t^2 −t+k=0  Δ=1^2 −4×4(k+1)k≥0 such that t∈R  k^2 +k−(1/(16))≤0  k_(1,2) =(1/2)(−1±((√5)/2))=−(((√5)+2)/4), (((√5)−2)/4)  ⇒−(((√5)+2)/4)≤k≤(((√5)−2)/4)  ⇒min=−(((√5)+2)/4)  ⇒max=(((√5)−2)/4)
letk=xy4y2x2+4y2=14(yx)(xy)+4(yx)=14t1t+4t=t4t21+4t2witht=yxRk+4kt2=t4t24(k+1)t2t+k=0Δ=124×4(k+1)k0suchthattRk2+k1160k1,2=12(1±52)=5+24,5245+24k524min=5+24max=524
Commented by liberty last updated on 16/Feb/21
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *